Spaces:
Running
Running
File size: 43,570 Bytes
6982e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 |
import json
from pathlib import Path
from typing import Optional
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from transformers.activations import QuickGELUActivation
import math
from einops.layers.torch import Rearrange
import einops
MODEL_CONFIGS = {
# Custom models trained from scratch
# "Standard" definitions:
# name | layers | width | heads
# B | 12 | 768 | 12
# L | 24 | 1024 | 16
# H | 32 | 1280 | 16
# G | 48 | 1664 | 16
# e | 56 | 1792 | 16
# 22 | 48 | 6144 | 48
# B/16, 224, PaLM, GELU
'CustomTest6': {
'class': 'CLIPLikeModel',
'embedding_dim': 768,
'num_attention_heads': 12,
'activation_cls': nn.GELU,
'num_channels': 3,
'patch_size': 16,
'use_palm_alt': True,
'num_layers': 12,
'use_mha_alt': False,
'good_dropout': False,
},
# GAP head + Sinusoidal positional embeddings + 448 image size
'CustomTest18': {
'class': 'CLIPLikeModel',
'embedding_dim': 768,
'num_attention_heads': 12,
'activation_cls': nn.GELU,
'num_channels': 3,
'patch_size': 16,
'use_palm_alt': True,
'num_layers': 12,
'use_mha_alt': False,
'good_dropout': False,
'use_gap_head': True,
'sine_positional_embeddings': True,
},
# SW Model + B/16 + ASL + 448 image size
# cutout_max_pct = 0
# mixup_alpha = 0.8
# noise_level = 2
# random_resize_method = true
# total_labels = 6549
'SWModel1': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': False},
# Sinusoidal positional embeddings
'SWModel2': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
# Sinusoidal positional embeddings + 224 image size + L/14
'SWModel3': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
# Sinusoidal positional embeddings + 224 image size + G/14
'SWModel4': {'class': 'ViT', 'num_blocks': 48, 'patch_size': 14, 'd_model': 1664, 'mlp_dim': 1664*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
# Sinusoidal positional embeddings + focal loss
'SWModel5': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel6': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel7': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel8': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel9': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel10': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
'SWModel11': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0, 'use_sine': True},
# Trying head_mean_after
'SWModel12': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'head_mean_after': True},
# Fat boy
'SWModel13': {'class': 'ViT', 'num_blocks': 6, 'patch_size': 16, 'd_model': 1536, 'mlp_dim': 1536*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
# L/14
'SWModel14': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel15': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-5, 'use_sine': True},
'SWModel16': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel16f': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel22': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.20, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel25': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 16, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True, 'cnn_stem': 'conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=1024;ln;relu;conv:c=1024,s=1,k=1,p=0'},
# CNN stem
'SWModel18': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=256;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1'},
'SWModel19': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=128,s=1;bn;relu;conv:c=256;bn;relu;conv:c=256,s=1;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel20': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel21': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;gelu;conv:c=128;ln;gelu;conv:c=256;ln;gelu;conv:c=512;ln;gelu;conv:c=768,s=1,k=1,p=0'},
'SWModel23': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
'SWModel24': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
# H/14
'SWModel17': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
'SWModel26': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True},
}
class VisionModel(nn.Module):
image_size: int
n_tags: int
def __init__(self, image_size: int, n_tags: int):
super().__init__()
self.image_size = image_size
self.n_tags = n_tags
@staticmethod
def load_model(path: Path | str, device: str | None = None) -> 'VisionModel':
"""
Load a model from a directory.
:param path: The directory containing the model.
:return: The model, the image size, and the number of tags.
"""
with open(Path(path) / 'config.json', 'r') as f:
config = json.load(f)
if (Path(path) / 'model.safetensors').exists():
from safetensors.torch import load_file
resume = load_file(Path(path) / 'model.safetensors', device='cpu')
else:
resume = torch.load(Path(path) / 'model.pt', map_location=torch.device('cpu'))
model_classes = VisionModel.__subclasses__()
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
model = model_cls(**{k: v for k, v in config.items() if k != 'class'})
model.load(resume['model'])
if device is not None:
model = model.to(device)
return model
@staticmethod
def from_config(config: dict) -> 'VisionModel':
model_classes = VisionModel.__subclasses__()
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
return model_cls(**{k: v for k, v in config.items() if k != 'class'})
def get_optimized_parameters(self, lr: float):
raise NotImplementedError
def save(self):
raise NotImplementedError
def load(self, state_dict):
raise NotImplementedError
def basic_calculate_loss(preds: dict[str, torch.Tensor], batch: dict, pos_weight: torch.Tensor | None, loss_type: str):
def asl_helper(preds, target):
p = F.softmax(preds, dim=1)
xs_pos = p.clamp(min=1e-6)
xs_neg = (1 - p).clamp(min=1e-6)
los_pos = torch.log(torch.gather(xs_pos, 1, target.unsqueeze(1))).sum()
los_neg = torch.log(xs_neg)
los_neg = los_neg.sum() - torch.gather(los_neg, 1, target.unsqueeze(1)).sum()
loss = los_pos + los_neg
return -loss
if loss_type == "ce":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'])
elif loss_type == "weighted":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight)
elif loss_type == "focal":
gamma = 2
p = torch.sigmoid(preds['tags'])
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
loss = ce_loss * ((1 - p_t) ** gamma)
loss = loss.mean()
elif loss_type == "focal2":
gamma = 2
p = torch.sigmoid(preds['tags'])
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
loss = ce_loss * ((1 - p_t) ** gamma) * 256
loss = loss.mean()
elif loss_type == "asl":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = los_pos + los_neg
loss = -loss.sum()
# Rating
loss = loss + asl_helper(preds['rating'], batch['rating'])
# Score
loss = loss + asl_helper(preds['score'], batch['score'])
elif loss_type == "asl2":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.sum()
elif loss_type == "asl3":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.mean()
elif loss_type == "asl4":
p = torch.sigmoid(preds['tags'])
xs_pos = p
xs_neg = 1 - p
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
loss = -los_pos - los_neg
loss = loss.mean() * 128
elif loss_type == "asl5":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 128
elif loss_type == "asl6":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 256
elif loss_type == "asl7":
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 2
else:
raise ValueError(f"Invalid loss type: {loss_type}")
return loss
class CLIPMlp(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, activation_cls):
super().__init__()
self.activation_fn = activation_cls()
self.fc1 = nn.Linear(hidden_size, intermediate_size)
self.fc2 = nn.Linear(intermediate_size, hidden_size)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class FastCLIPAttention2(nn.Module):
"""Fast Attention module for CLIP-like. This is NOT a drop-in replacement for CLIPAttention, since it adds additional flexibility. Mainly uses xformers."""
def __init__(self, hidden_size: int, out_dim: int, num_attention_heads: int, out_seq_len: Optional[int] = None, norm_qk: bool = False):
super().__init__()
self.out_seq_len = out_seq_len
self.embed_dim = hidden_size
self.out_dim = out_dim
self.norm_qk = norm_qk
self.num_heads = num_attention_heads
self.head_dim = hidden_size // num_attention_heads
assert self.head_dim * num_attention_heads == self.embed_dim, "embed_dim must be divisible by num_attention_heads"
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.kv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2)
self.out_proj = nn.Linear(self.embed_dim, self.out_dim)
if self.norm_qk:
self.query_norm = nn.LayerNorm(self.embed_dim)
self.key_norm = nn.LayerNorm(self.embed_dim)
#def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous()
def forward(self, query_states: torch.Tensor, kv_states: torch.Tensor) -> torch.Tensor:
bsz, src_len, embed_dim = kv_states.size()
if self.out_seq_len is not None:
tgt_len = self.out_seq_len
else:
tgt_len = src_len
kv_states = self.kv_proj(kv_states) # (bsz, src_len, embed_dim * 2)
q_states = self.q_proj(query_states[:, :tgt_len]) # (bsz, tgt_len, embed_dim)
# NOTE: It is not clear if LayerNorm should be applied to the embed_dim, or to the head_dim
if self.norm_qk:
q_states = self.query_norm(q_states).type(q_states.dtype)
k_states = self.key_norm(kv_states[:, :, :embed_dim]).type(kv_states.dtype)
v_states = kv_states[:, :, embed_dim:]
else:
k_states = kv_states[:, :, :embed_dim]
v_states = kv_states[:, :, embed_dim:]
q_states = q_states.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, tgt_len, head_dim)
k_states = k_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
v_states = v_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
# Performs scale of query_states, attention, and softmax
with torch.backends.cuda.sdp_kernel(enable_math=False):
x = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
x = x.transpose(1, 2).contiguous().view(bsz, tgt_len, embed_dim) # (bsz, tgt_len, embed_dim)
# Projection
x = self.out_proj(x) # (bsz, tgt_len, out_dim)
return x
class SkipInit(nn.Module):
def __init__(self, hidden_size: int, channel_wise: bool, init_scale: float):
super().__init__()
self.hidden_size = hidden_size
self.channel_wise = channel_wise
self.init_scale = init_scale
if self.channel_wise:
self.scale = nn.Parameter(torch.ones(hidden_size) * init_scale)
else:
self.scale = nn.Parameter(torch.tensor(init_scale))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * self.scale
class FastCLIPEncoderLayer(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
out_seq_len: Optional[int],
activation_cls = QuickGELUActivation,
use_palm_alt: bool = False,
norm_qk: bool = False,
skip_init: Optional[float] = None,
stochastic_depth: Optional[float] = None,
):
super().__init__()
self.use_palm_alt = use_palm_alt
self.stochastic_depth = stochastic_depth
self.self_attn = FastCLIPAttention2(
hidden_size=hidden_size,
out_dim=hidden_size,
num_attention_heads=num_attention_heads,
out_seq_len=out_seq_len,
norm_qk=norm_qk,
)
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
self.layer_norm1 = nn.LayerNorm(hidden_size)
if not use_palm_alt:
self.layer_norm2 = nn.LayerNorm(hidden_size)
if skip_init is not None:
self.attn_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
self.mlp_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
else:
self.attn_skip_init = nn.Identity()
self.mlp_skip_init = nn.Identity()
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
if not self.use_palm_alt:
hidden_states = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
hidden_states = self.attn_skip_init(hidden_states)
hidden_states = hidden_states + residual[:, :hidden_states.size(1)]
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.mlp_skip_init(hidden_states)
hidden_states = hidden_states + residual
else:
# An alternative implementation inspired by the PALM paper
# By performing the attention and MLP in parallel it's possible to fuse the linear projections of the attention and MLP layers
# We don't do that here yet, but that supposedly improves efficiency without hurting performance
attn = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
attn = self.attn_skip_init(attn)
mlp = self.mlp(hidden_states[:, :attn.size(1)])
mlp = self.mlp_skip_init(mlp)
if self.stochastic_depth is not None:
attn = torchvision.ops.stochastic_depth(attn, self.stochastic_depth, mode='row', training=self.training)
mlp = torchvision.ops.stochastic_depth(mlp, self.stochastic_depth, mode='row', training=self.training)
hidden_states = residual[:, :attn.size(1)] + attn + mlp
return hidden_states
def sinusoidal_position_embedding(width: int, height: int, depth: int, dtype, device, temperature = 10000):
"""
Sinusoidal position embedding. Returns a flat tensor of shape (h * w, d).
"""
assert depth % 4 == 0, "Embedding dimension must be divisible by 4."
y, x = torch.meshgrid(torch.arange(height, device=device), torch.arange(width, device=device), indexing="ij")
omega = torch.arange(depth // 4, device=device) / (depth // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
embedding = torch.cat([x.sin(), x.cos(), y.sin(), y.cos()], dim=1)
return embedding.type(dtype)
class CLIPEmbeddingLayer(nn.Module):
def __init__(self, hidden_size: int, num_channels: int, image_size: int, patch_size: int, patch_dropout: float = 0.0, good_dropout: bool = False, dpn: bool = False, sine_positional_embeddings: bool = False):
super().__init__()
assert image_size % patch_size == 0, "Image dimensions must be divisible by the patch size."
seq_len = (image_size // patch_size) ** 2
self.patch_dropout = patch_dropout
self.hidden_size = hidden_size
self.good_dropout = good_dropout
self.dpn = dpn
self.sine_positional_embeddings = sine_positional_embeddings
self.patch_size = patch_size
self.patch_embeddings = nn.Conv2d(
in_channels=num_channels,
out_channels=hidden_size,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
if not self.sine_positional_embeddings:
self.positional_embeddings = nn.Embedding(seq_len, hidden_size)
self.register_buffer("position_ids", torch.arange(seq_len))
if self.dpn:
self.to_patch_embeddings = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size),
nn.LayerNorm(3 * patch_size * patch_size),
nn.Linear(3 * patch_size * patch_size, hidden_size),
nn.LayerNorm(hidden_size),
)
else:
self.to_patch_embeddings = nn.Conv2d(
in_channels=num_channels,
out_channels=hidden_size,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
B, C, H, W = pixel_values.shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
if self.dpn:
patches = self.to_patch_embeddings(pixel_values)
else:
patches = self.to_patch_embeddings(pixel_values)
patches = patches.flatten(2).transpose(1, 2)
seq_len = patches.shape[1]
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
if self.sine_positional_embeddings:
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.hidden_size, pixel_values.dtype, pixel_values.device)
else:
position_embeddings = self.positional_embeddings(self.position_ids)
if patch_dropout == seq_len or not self.training:
embeddings = patches + position_embeddings
elif self.good_dropout:
# Pick random patches to drop out
# The "good_dropout" variant uses random permutations for each batch item, but is slightly slower and involves more code
# The below method is a nice trick to generate a batch of random permutations.
# Torch (as of 1.13) doesn't have a built-in function to do this, and a for loop of torch.randperm is slow.
# Based on some benchmarks I measured the generation of the mask and the fetching to be only 50% slower than the non-"good_dropout" variant.
# And the time taken here is only a fraction of the time spent performing the embedding convolution.
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
patch_mask = torch.rand(B, seq_len, device=patches.device)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
patch_mask = torch.argsort(patch_mask, dim=1)
# Truncate
patch_mask = patch_mask[:, :patch_dropout]
embeddings = patches.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, self.hidden_size)) + position_embeddings[patch_mask]
else:
# The non-"good_dropout" variant uses a single random permutation for all batch items, but is faster and uses less code
indices = torch.randperm(seq_len, device=pixel_values.device)[:patch_dropout]
embeddings = patches[:, indices, :] + position_embeddings[indices.expand(1, -1)]
return embeddings
class MHAPoolingHead(nn.Module):
def __init__(self, hidden_size: int, num_attention_heads: int, activation_cls, out_dim: int, alt_style: bool, norm_qk: bool):
super().__init__()
self.out_dim = out_dim if not alt_style else hidden_size
self.probe = nn.Parameter(torch.randn(hidden_size))
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
self.layer_norm = nn.LayerNorm(hidden_size)
self.pooling_head = nn.Linear(hidden_size, 1)
self.self_attn = FastCLIPAttention2(
hidden_size=hidden_size,
out_dim=self.out_dim,
num_attention_heads=num_attention_heads,
out_seq_len=1,
norm_qk=norm_qk,
)
self.mlp = CLIPMlp(self.out_dim, 4 * self.out_dim, activation_cls)
self.layer_norm1 = nn.LayerNorm(hidden_size)
self.layer_norm2 = nn.LayerNorm(self.out_dim)
if alt_style:
self.final_proj = nn.Linear(hidden_size, out_dim)
else:
self.final_proj = nn.Identity()
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.layer_norm1(hidden_states)
query_states = self.probe.unsqueeze(0).unsqueeze(0).expand(hidden_states.size(0), 1, -1)
hidden_states = self.self_attn(query_states=query_states, kv_states=hidden_states)
# We don't use a residual connection here because the out_dim is different from the hidden_size
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
hidden_states = self.final_proj(hidden_states)
return hidden_states.squeeze(1)
class GAPHead(nn.Module):
def __init__(self, hidden_size: int, out_dim: int):
super().__init__()
self.norm = nn.LayerNorm(hidden_size)
self.proj = nn.Linear(hidden_size, out_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.mean(dim=1)
x = self.norm(x)
x = self.proj(x)
return x
class CLIPLikeModel(VisionModel):
def __init__(
self,
n_tags: int,
embedding_dim: int,
num_attention_heads: int,
activation_cls,
num_channels: int,
image_size: int,
patch_size: int,
patch_dropout: float,
use_palm_alt: bool,
num_layers: int,
use_mha_alt: bool,
loss_type: str,
good_dropout: bool=False,
dpn: bool=False,
sine_positional_embeddings: bool=False,
norm_qk: bool = False,
no_wd_bias: bool = False,
use_gap_head: bool = False,
skip_init: Optional[float] = None,
stochastic_depth: Optional[float] = None,
):
super().__init__(image_size, n_tags)
out_dim = n_tags
self.n_tags = n_tags
self.loss_type = loss_type
self.no_wd_bias = no_wd_bias
stochastic_depth_space = torch.linspace(0, stochastic_depth, num_layers) if stochastic_depth is not None else None
self.embedding_layer = CLIPEmbeddingLayer(embedding_dim, num_channels, image_size, patch_size, patch_dropout, good_dropout, dpn, sine_positional_embeddings)
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=embedding_dim,
num_attention_heads=num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=use_palm_alt,
norm_qk=norm_qk,
skip_init=skip_init,
stochastic_depth=stochastic_depth_space[i].item() if stochastic_depth_space is not None else None,
) for i in range(num_layers)])
if use_gap_head:
self.pooling_head = GAPHead(embedding_dim, out_dim)
else:
self.pooling_head = MHAPoolingHead(embedding_dim, num_attention_heads, activation_cls, out_dim, use_mha_alt, norm_qk=norm_qk)
def forward(self, batch):
hidden_states = self.embedding_layer(batch['image'])
hidden_states = self.pre_layer_norm(hidden_states)
for layer in self.encoder_layers:
hidden_states = layer(hidden_states)
preds = self.pooling_head(hidden_states)
result = {
'tags': preds,
}
return result
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
def get_optimized_parameters(self, lr: float):
if self.no_wd_bias:
return self.get_optimized_parameters_no_wd_bias()
else:
return self.parameters()
def get_optimized_parameters_no_wd_bias(self):
decay = []
no_decay = []
for name, param in self.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias"):
no_decay.append(param)
print(f'No decay: {name}')
else:
decay.append(param)
return [
{'params': decay},
{'params': no_decay, 'weight_decay': 0.},
]
def save(self):
return self.state_dict()
def load(self, state_dict):
self.load_state_dict(state_dict)
class MaskedAutoEncoderViT(nn.Module):
def __init__(
self,
n_tags: int,
embedding_dim: int,
num_attention_heads: int,
activation_cls,
num_channels: int,
image_size: int,
patch_size: int,
num_layers: int,
loss_type: str,
sine_positional_embeddings: bool=False,
decoder_embedding_dim: int = 512,
decoder_num_attention_heads: int = 8,
decoder_num_layers: int = 6,
decoder_force_projection: bool = False,
masking_ratio: float = 0.75,
mae_loss_weight: float = 1.0,
mae_normalize_targets: bool = False,
mae_post_norm: bool = False,
):
super().__init__()
self.n_tags = n_tags
self.seq_len = (image_size // patch_size) ** 2
self.embedding_dim = embedding_dim
self.decoder_embedding_dim = decoder_embedding_dim
self.sine_positional_embeddings = sine_positional_embeddings
self.image_size = image_size
self.patch_size = patch_size
self.masking_ratio = masking_ratio
self.loss_type = loss_type
self.mae_loss_weight = mae_loss_weight
self.mae_normalize_targets = mae_normalize_targets
if not self.sine_positional_embeddings:
self.positional_embeddings = nn.Embedding(self.seq_len, embedding_dim)
self.decoder_positional_embeddings = nn.Embedding(self.seq_len, decoder_embedding_dim)
self.register_buffer("position_ids", torch.arange(self.seq_len))
self.to_patches = Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size)
self.patch_embedder = nn.Linear(num_channels * patch_size * patch_size, embedding_dim)
# Encoder
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=embedding_dim,
num_attention_heads=num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=True,
norm_qk=False,
skip_init=None,
) for _ in range(num_layers)])
# Head for classification
self.pooling_head = GAPHead(embedding_dim, n_tags)
# Decoder
if embedding_dim != decoder_embedding_dim or decoder_force_projection:
self.encoder_to_decoder_proj = nn.Linear(embedding_dim, decoder_embedding_dim)
else:
self.encoder_to_decoder_proj = nn.Identity()
self.decoder_pre_layer_norm = nn.LayerNorm(decoder_embedding_dim)
self.decoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
hidden_size=decoder_embedding_dim,
num_attention_heads=decoder_num_attention_heads,
out_seq_len=None,
activation_cls=activation_cls,
use_palm_alt=True,
norm_qk=False,
skip_init=None,
) for _ in range(decoder_num_layers)])
if mae_post_norm:
self.decoder_to_pixel_values = nn.Sequential(
nn.LayerNorm(decoder_embedding_dim),
nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
)
else:
self.decoder_to_pixel_values = nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
self.mask_token = nn.Parameter(torch.zeros(decoder_embedding_dim))
torch.nn.init.normal_(self.mask_token, std=0.02)
def forward(self, batch):
pixel_values = batch['image']
device = pixel_values.device
B, C, H, W = pixel_values.shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
# Convert image to patches (B, seq_len, C * patch_size * patch_size)
patches = self.to_patches(pixel_values)
seq_len = patches.shape[1]
num_masked = int(self.masking_ratio * seq_len)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
# From this we can get the masked and unmasked indices
patch_mask = torch.rand(B, seq_len, device=device)
patch_mask = torch.argsort(patch_mask, dim=1)
masked_indices, unmasked_indices = patch_mask[:, :num_masked], patch_mask[:, num_masked:]
batch_range = torch.arange(B, device=device)[:, None]
# Masked and unmasked patches
unmasked_patches = patches[batch_range, unmasked_indices]
masked_patches = patches[batch_range, masked_indices]
# Embed unmasked patches for the encoder (B, seq_len, embedding_dim)
tokens = self.patch_embedder(unmasked_patches)
if self.sine_positional_embeddings:
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.embedding_dim, pixel_values.dtype, device)
decoder_position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.decoder_embedding_dim, pixel_values.dtype, device)
else:
position_embeddings = self.positional_embeddings(self.position_ids)
decoder_position_embeddings = self.decoder_positional_embeddings(self.position_ids)
# Add position embeddings
tokens = tokens + position_embeddings[unmasked_indices]
# Run the encoder
encoded_tokens = self.pre_layer_norm(tokens)
for layer in self.encoder_layers:
encoded_tokens = layer(encoded_tokens)
# Label predictions
if self.training:
preds = self.pooling_head(encoded_tokens)
else:
# During inference, classify using the entire image
# But we'll do the usual for the MAE part, just so we can see how MAE is performing during validation
tokens = self.patch_embedder(patches)
tokens = tokens + position_embeddings
tokens = self.pre_layer_norm(tokens)
for layer in self.encoder_layers:
tokens = layer(tokens)
preds = self.pooling_head(tokens)
# Projection for the decoder and position embeddings
decoder_tokens = self.encoder_to_decoder_proj(encoded_tokens)
decoder_tokens = decoder_tokens + decoder_position_embeddings[unmasked_indices]
# Fill in the masked patches
mask_tokens = einops.repeat(self.mask_token, 'd -> b n d', b = B, n = num_masked)
mask_tokens = mask_tokens + decoder_position_embeddings[masked_indices]
decoder_tokens = torch.cat([decoder_tokens, mask_tokens], dim=1)
# Run the decoder
decoded_tokens = self.decoder_pre_layer_norm(decoder_tokens)
for layer in self.decoder_layers:
decoded_tokens = layer(decoded_tokens)
# Only predict the masked patches
# All the masked patches are at the end of the sequence
decoded_tokens = decoded_tokens[:, -num_masked:]
pred_pixel_values = self.decoder_to_pixel_values(decoded_tokens)
# Calculate the mae loss
if self.mae_normalize_targets:
# Normalize each patch by its mean and variance. The ViCHA paper says this provides better results
means = masked_patches.mean(dim=-1, keepdim=True)
vars = masked_patches.var(dim=-1, keepdim=True)
target = (masked_patches - means) / (vars + 1e-6)**0.5
mae_loss = F.mse_loss(pred_pixel_values, target)
else:
mae_loss = F.mse_loss(pred_pixel_values, masked_patches)
mae_loss = mae_loss * self.mae_loss_weight
return {
'tags': preds,
'mae_loss': mae_loss,
}
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) + preds['mae_loss']
def get_optimized_parameters(self, lr: float):
return self.parameters()
def save(self):
return self.state_dict()
def load(self, state_dict):
self.load_state_dict(state_dict)
class StochDepth(nn.Module):
def __init__(self, drop_rate: float, scale_by_keep: bool = False):
super().__init__()
self.drop_rate = drop_rate
self.scale_by_keep = scale_by_keep
def forward(self, x):
if not self.training:
return x
batch_size = x.shape[0]
r = torch.rand((batch_size, 1, 1), device=x.device)
keep_prob = 1 - self.drop_rate
binary_tensor = torch.floor(keep_prob + r)
if self.scale_by_keep:
x = x / keep_prob
return x * binary_tensor
class SkipInitChannelwise(nn.Module):
def __init__(self, channels, init_val=1e-6):
super().__init__()
self.channels = channels
self.init_val = init_val
self.skip = nn.Parameter(torch.ones(channels) * init_val)
def forward(self, x):
return x * self.skip
class PosEmbedding(nn.Module):
def __init__(self, d_model: int, max_len: int, use_sine: bool, patch_size: int):
super().__init__()
self.d_model = d_model
self.max_len = max_len
self.use_sine = use_sine
self.patch_size = patch_size
if not self.use_sine:
self.embedding = nn.Embedding(max_len, d_model)
nn.init.trunc_normal_(self.embedding.weight, std=0.02)
self.register_buffer("position_ids", torch.arange(max_len))
def forward(self, x, width: int, height: int):
if self.use_sine:
position_embeddings = sinusoidal_position_embedding(width // self.patch_size, height // self.patch_size, self.d_model, x.dtype, x.device)
else:
position_embeddings = self.embedding(self.position_ids)
return x + position_embeddings
class MLPBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, stochdepth_rate: float):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.activation = nn.GELU()
if stochdepth_rate > 0:
self.stochdepth = StochDepth(stochdepth_rate, scale_by_keep=True)
else:
self.stochdepth = None
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
if self.stochdepth is not None:
x = self.stochdepth(x)
x = self.linear2(x)
return x
class ViTBlock(nn.Module):
def __init__(self, num_heads: int, d_model: int, d_ff: int, layerscale_init: float, stochdepth_rate: float):
super().__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
# MHA
self.norm1 = nn.LayerNorm(d_model)
self.qkv_proj = nn.Linear(d_model, d_model * 3)
self.out_proj = nn.Linear(d_model, d_model)
self.skip_init1 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
self.stochdepth1 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
# MLP
self.norm2 = nn.LayerNorm(d_model)
self.mlp = MLPBlock(d_model, d_ff, stochdepth_rate)
self.skip_init2 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
self.stochdepth2 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
def forward(self, x):
bsz, src_len, embed_dim = x.shape
out = x
out = self.norm1(out)
# MHA
qkv_states = self.qkv_proj(out).split(self.d_model, dim=-1)
q_states = qkv_states[0].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
k_states = qkv_states[1].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
v_states = qkv_states[2].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
with torch.backends.cuda.sdp_kernel(enable_math=False):
out = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
out = out.transpose(1, 2).contiguous().view(bsz, src_len, embed_dim) # (bsz, tgt_len, embed_dim)
out = self.out_proj(out)
out = self.skip_init1(out)
if self.stochdepth1 is not None:
out = self.stochdepth1(out)
x = out + x
out = self.norm2(x)
out = self.mlp(out)
out = self.skip_init2(out)
if self.stochdepth2 is not None:
out = self.stochdepth2(out)
out = out + x
return out
def CaiT_LayerScale_init(network_depth):
if network_depth <= 18:
return 1e-1
elif network_depth <= 24:
return 1e-5
else:
return 1e-6
class CNNLayerNorm(nn.Module):
def __init__(self, d_model: int):
super().__init__()
self.norm = nn.LayerNorm(d_model)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 3)
x = self.norm(x)
x = x.transpose(1, 3)
return x
class CNNStem(nn.Module):
def __init__(self, config: str):
super().__init__()
self.config = config
layers = []
channels = 3
for line in config.split(";"):
ty, line = line.split(":") if ":" in line else (line, "")
options = line.split(",")
options = [o.split("=") for o in options] if line else []
options = {k: v for k, v in options}
if ty == 'conv':
layers.append(nn.Conv2d(
in_channels=channels,
out_channels=int(options['c']),
kernel_size=int(options['k'] if 'k' in options else 3),
stride=int(options['s'] if 's' in options else 2),
bias=True,
padding=int(options['p'] if 'p' in options else 1),
))
channels = int(options['c'])
elif ty == 'bn':
layers.append(nn.BatchNorm2d(channels))
elif ty == 'ln':
layers.append(CNNLayerNorm(channels))
elif ty == 'relu':
layers.append(nn.ReLU())
elif ty == 'gelu':
layers.append(nn.GELU())
self.conv = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class ViT(VisionModel):
def __init__(self,
n_tags: int,
image_size: int,
num_blocks: int,
patch_size: int,
d_model: int,
mlp_dim: int,
num_heads: int,
stochdepth_rate: float,
use_sine: bool,
loss_type: str,
layerscale_init: Optional[float] = None,
head_mean_after: bool = False,
cnn_stem: str | None = None,
patch_dropout: float = 0.0,
):
super().__init__(image_size, n_tags)
#assert image_size % patch_size == 0, "image_size must be divisible by patch_size"
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
out_dim = n_tags
self.n_tags = n_tags
self.loss_type = loss_type
self.patch_size = patch_size
self.head_mean_after = head_mean_after
self.patch_dropout = patch_dropout
layerscale_init = CaiT_LayerScale_init(num_blocks) if layerscale_init is None else layerscale_init
self.patch_embeddings = nn.Conv2d(
in_channels=3,
out_channels=d_model,
kernel_size=patch_size,
stride=patch_size,
bias=True,
) if cnn_stem is None else CNNStem(cnn_stem)
self.pos_embedding = PosEmbedding(d_model, (image_size // patch_size) ** 2, use_sine=use_sine, patch_size=patch_size)
self.blocks = nn.ModuleList([
ViTBlock(num_heads, d_model, mlp_dim, layerscale_init, stochdepth_rate)
for _ in range(num_blocks)
])
self.norm = nn.LayerNorm(d_model)
self.head = nn.Linear(d_model, out_dim)
def forward(self, batch, return_embeddings=False, return_loss: bool = False, pos_weight = None):
B, C, H, W = batch['image'].shape
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
x = self.patch_embeddings(batch['image']) # (bsz, d_model, patch_num, patch_num)
x = x.flatten(2).transpose(1, 2) # (bsz, patch_num ** 2, d_model)
x = self.pos_embedding(x, W, H) # (bsz, patch_num ** 2, d_model)
# Patch dropout
seq_len = x.shape[1]
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
if patch_dropout != seq_len:
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
patch_mask = torch.rand(B, seq_len, device=x.device)
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
patch_mask = torch.argsort(patch_mask, dim=1)
# Truncate
patch_mask = patch_mask[:, :patch_dropout]
x = x.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, x.shape[-1]))
#indices = torch.randperm(seq_len, device=x.device)[:patch_dropout]
#x = x[:, indices, :]
# Transformer
for block in self.blocks:
x = block(x)
# Head
result = {}
x = self.norm(x)
if self.head_mean_after:
x = self.head(x)
x = x.mean(dim=1)
else:
x = x.mean(dim=1)
if return_embeddings:
result['embeddings'] = x
x = self.head(x)
result['tags'] = x
if return_loss:
result['loss'] = self.calculate_loss(result, batch, pos_weight)
return result
def calculate_loss(self, preds, batch, pos_weight):
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
def get_optimized_parameters(self, lr: float):
return self.parameters()
def save(self):
return self.state_dict()
def load(self, state_dict):
if 'head.weight' in state_dict and 'head.bias' in state_dict and state_dict['head.weight'].shape[0] == (self.n_tags + 9):
# Support old models which included 3 rating and 6 score dimensions
state_dict['head.weight'] = state_dict['head.weight'][:self.n_tags]
state_dict['head.bias'] = state_dict['head.bias'][:self.n_tags]
self.load_state_dict(state_dict) |