File size: 4,545 Bytes
5adadb0
fc83354
 
5adadb0
 
 
 
 
 
1825005
fc83354
5adadb0
 
 
 
 
 
1825005
5adadb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc83354
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os


CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path("h2vtfhad")
TITLE = "<h1><center>Foo</center></h1>"
HF_TOKEN = os.environ.get("HF_TOKEN", None)


class ImageAdapter(nn.Module):
	def __init__(self, input_features: int, output_features: int):
		super().__init__()
		self.linear1 = nn.Linear(input_features, output_features)
		self.activation = nn.GELU()
		self.linear2 = nn.Linear(output_features, output_features)
	
	def forward(self, vision_outputs: torch.Tensor):
		x = self.linear1(vision_outputs)
		x = self.activation(x)
		x = self.linear2(x)
		return x


# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")


# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

# LLM
print("Loading LLM")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()

# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
image_adapter.eval()
image_adapter.to("cuda")


@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image):
	torch.cuda.empty_cache()

	# Preprocess image
	image = clip_processor(images=input_image, return_tensors='pt').pixel_values
	image = image.to('cuda')

	# Tokenize the prompt
	prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)

	# Embed image
	with torch.amp.autocast_mode.autocast('cuda', enabled=True):
		vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
		image_features = vision_outputs.hidden_states[-2]
		embedded_images = image_adapter(image_features)
		embedded_images = embedded_images.to('cuda')
	
	# Embed prompt
	prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
	assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
	embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))

	# Construct prompts
	inputs_embeds = torch.cat([
		embedded_bos.expand(embedded_images.shape[0], -1, -1),
		embedded_images.to(dtype=embedded_bos.dtype),
		prompt_embeds.expand(embedded_images.shape[0], -1, -1),
	], dim=1)

	input_ids = torch.cat([
		torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
		torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
		prompt,
	], dim=1).to('cuda')
	attention_mask = torch.ones_like(input_ids)

	#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
	generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)

	# Trim off the prompt
	generate_ids = generate_ids[:, input_ids.shape[1]:]
	if generate_ids[0][-1] == tokenizer.eos_token_id:
		generate_ids = generate_ids[:, :-1]

	caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]

	return [caption]


with gr.Blocks() as demo:
	gr.HTML(TITLE)
	with gr.Row():
		with gr.Column():
			input_image = gr.Image(type="pil", label="Input Image")
			run_button = gr.Button("Caption")
		
		with gr.Column():
			output_caption = gr.Textbox(label="Caption", default="")
	
	run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])


if __name__ == "__main__":
    demo.launch()