File size: 3,763 Bytes
f3e52f9
9a96ee5
f3e52f9
 
 
 
 
 
 
f9c4157
f3e52f9
f6d6527
 
 
 
f3e52f9
 
f6d6527
f3e52f9
f6d6527
f3e52f9
 
 
 
f6d6527
f3e52f9
f6d6527
f3e52f9
 
 
 
 
f6d6527
 
f3e52f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d6527
 
 
f3e52f9
 
f6d6527
 
 
f3e52f9
 
 
 
 
 
f6d6527
 
 
 
 
 
9a96ee5
f3e52f9
 
 
 
 
 
 
 
f6d6527
 
f3e52f9
9a96ee5
f3e52f9
 
9a96ee5
f3e52f9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
"""lab1_sky_detector.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1fbwiWdURCSaRB3fbSs0gF88hiFqpJhC1
"""

#!pip install gradio

import gradio as gr
#from google.colab import files
import cv2
import numpy as np
#from matplotlib import pyplot as plt
#from scipy.signal import medfilt

# upload input image (in Google Colab environment)
#def upload_image():
#  uploaded = files.upload()
#  file = next(iter(uploaded))
#  img = cv2.imread(file)
#  return img

# display input image (in Google Colab environment)
#def display_image(img, title="Image"):
#  img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert from BGR to RGB for OpenCV
#  plt.imshow(img_rgb)
#  plt.title(title)
#  plt.axis("off")
#  plt.show()

# convert input image to grayscale to prepare for edge detection
def convert_to_grayscale(img):
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  return img_gray

# use Gaussian blurring to reduce noise
def apply_blur(img_gray):
  img_blurred = cv2.blur(img_gray, (3, 3))
  return img_blurred

# use Laplacian gradient to detect edges
def calculate_gradient(img_blurred, threshold=9):
  laplacian = cv2.Laplacian(img_blurred, cv2.CV_8U)
  gradient_mask = (laplacian < threshold).astype(np.uint8)
  return gradient_mask

# use morphological erosion to refine the mask
def refine_mask_morphological(gradient_mask):
  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
  mask = cv2.morphologyEx(gradient_mask, cv2.MORPH_ERODE, kernel)
#  skyline_mask = cal_skyline(eroded_mask)
  return mask

# apply the mask to isolate the sky
#def cal_skyline(mask):
#  h, w = mask.shape
#  for i in range(w):
#    column = mask[:, i]
#    after_median = medfilt(column, kernel_size=21)
#    try:
#      first_white_index = np.where(after_median == 1)[0][0]
#      first_black_index = np.where(after_median == 0)[0][0]
#      if first_black_index > first_white_index:
#        mask[:first_black_index, i] = 1
#        mask[first_black_index:, i] = 0
#    except IndexError:
#      continue
#  return mask

# use median blur to refine the mask
def refine_mask_median(mask):
  h, w = mask.shape
  mask_blurred = cv2.medianBlur(mask, 9)
  for i in range(w):
    median = mask_blurred[:, i]
    try:
      first_white_index = np.where(median == 0)[0][0]
      first_black_index = np.where(median == 1)[0][0]
      if first_white_index > 20:
        mask[first_black_index:first_white_index, i] = 1
        mask[first_white_index:, i] = 0
        mask[:first_black_index, i] = 0
    except:
      continue
  return mask

# extract sky region by applying the mask
def get_sky_region(img, mask):
  sky_region = cv2.bitwise_and(img, img, mask=mask)
  return sky_region

# run in order and show the detected sky region
#def sky_detector(img):
#  display_image(img, "Original Image")
#  img_blurred = convert_to_grayscale_and_blur(img)
#  gradient_mask = calculate_gradient(img_blurred)
#  skyline_mask = refine_skyline(gradient_mask)
#  sky_region = get_sky_region(img, skyline_mask)
#  display_image(sky_region, "Sky Region")

# main
#image = upload_image()
#sky_detector(image)

# run in order for Gardio
def sky_detector(img):
  img_gray = convert_to_grayscale(img)
  img_blurred = apply_blur(img_gray)
  gradient_mask = calculate_gradient(img_blurred)
  mask = refine_mask_morphological(gradient_mask)
  mask = refine_mask_median(mask)
  sky_region = get_sky_region(img, mask)
#  sky_region_rgb = cv2.cvtColor(sky_region, cv2.COLOR_BGR2RGB)
  return sky_region

# set up Gardio interface
interface = gr.Interface(
    fn=sky_detector,
    inputs="image",
    outputs="image",
    title="Sky Detector",
    live=True
    )

interface.launch(share=True, debug=True)