Spaces:
Sleeping
Sleeping
File size: 3,763 Bytes
f3e52f9 9a96ee5 f3e52f9 f9c4157 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 f3e52f9 f6d6527 9a96ee5 f3e52f9 f6d6527 f3e52f9 9a96ee5 f3e52f9 9a96ee5 f3e52f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# -*- coding: utf-8 -*-
"""lab1_sky_detector.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1fbwiWdURCSaRB3fbSs0gF88hiFqpJhC1
"""
#!pip install gradio
import gradio as gr
#from google.colab import files
import cv2
import numpy as np
#from matplotlib import pyplot as plt
#from scipy.signal import medfilt
# upload input image (in Google Colab environment)
#def upload_image():
# uploaded = files.upload()
# file = next(iter(uploaded))
# img = cv2.imread(file)
# return img
# display input image (in Google Colab environment)
#def display_image(img, title="Image"):
# img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert from BGR to RGB for OpenCV
# plt.imshow(img_rgb)
# plt.title(title)
# plt.axis("off")
# plt.show()
# convert input image to grayscale to prepare for edge detection
def convert_to_grayscale(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img_gray
# use Gaussian blurring to reduce noise
def apply_blur(img_gray):
img_blurred = cv2.blur(img_gray, (3, 3))
return img_blurred
# use Laplacian gradient to detect edges
def calculate_gradient(img_blurred, threshold=9):
laplacian = cv2.Laplacian(img_blurred, cv2.CV_8U)
gradient_mask = (laplacian < threshold).astype(np.uint8)
return gradient_mask
# use morphological erosion to refine the mask
def refine_mask_morphological(gradient_mask):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
mask = cv2.morphologyEx(gradient_mask, cv2.MORPH_ERODE, kernel)
# skyline_mask = cal_skyline(eroded_mask)
return mask
# apply the mask to isolate the sky
#def cal_skyline(mask):
# h, w = mask.shape
# for i in range(w):
# column = mask[:, i]
# after_median = medfilt(column, kernel_size=21)
# try:
# first_white_index = np.where(after_median == 1)[0][0]
# first_black_index = np.where(after_median == 0)[0][0]
# if first_black_index > first_white_index:
# mask[:first_black_index, i] = 1
# mask[first_black_index:, i] = 0
# except IndexError:
# continue
# return mask
# use median blur to refine the mask
def refine_mask_median(mask):
h, w = mask.shape
mask_blurred = cv2.medianBlur(mask, 9)
for i in range(w):
median = mask_blurred[:, i]
try:
first_white_index = np.where(median == 0)[0][0]
first_black_index = np.where(median == 1)[0][0]
if first_white_index > 20:
mask[first_black_index:first_white_index, i] = 1
mask[first_white_index:, i] = 0
mask[:first_black_index, i] = 0
except:
continue
return mask
# extract sky region by applying the mask
def get_sky_region(img, mask):
sky_region = cv2.bitwise_and(img, img, mask=mask)
return sky_region
# run in order and show the detected sky region
#def sky_detector(img):
# display_image(img, "Original Image")
# img_blurred = convert_to_grayscale_and_blur(img)
# gradient_mask = calculate_gradient(img_blurred)
# skyline_mask = refine_skyline(gradient_mask)
# sky_region = get_sky_region(img, skyline_mask)
# display_image(sky_region, "Sky Region")
# main
#image = upload_image()
#sky_detector(image)
# run in order for Gardio
def sky_detector(img):
img_gray = convert_to_grayscale(img)
img_blurred = apply_blur(img_gray)
gradient_mask = calculate_gradient(img_blurred)
mask = refine_mask_morphological(gradient_mask)
mask = refine_mask_median(mask)
sky_region = get_sky_region(img, mask)
# sky_region_rgb = cv2.cvtColor(sky_region, cv2.COLOR_BGR2RGB)
return sky_region
# set up Gardio interface
interface = gr.Interface(
fn=sky_detector,
inputs="image",
outputs="image",
title="Sky Detector",
live=True
)
interface.launch(share=True, debug=True) |