File size: 8,295 Bytes
074c4ae
9a40e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
47097db
9a40e4f
074c4ae
0a431d7
 
9a40e4f
0a431d7
05e2cb7
074c4ae
9a40e4f
 
 
 
47097db
9a40e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074c4ae
 
 
9a40e4f
 
47097db
9a40e4f
 
 
47097db
9a40e4f
 
 
 
 
47097db
9a40e4f
 
 
 
 
 
 
 
588af69
715fc3c
 
 
9a40e4f
 
 
 
 
fc126c5
9a40e4f
 
 
 
074c4ae
9a40e4f
05e2cb7
9a40e4f
 
47097db
9a40e4f
47097db
 
 
05e2cb7
9a40e4f
074c4ae
 
 
05e2cb7
074c4ae
05e2cb7
 
 
 
074c4ae
05e2cb7
9a40e4f
 
922e0e8
 
05e2cb7
922e0e8
05e2cb7
922e0e8
9a40e4f
074c4ae
922e0e8
074c4ae
05e2cb7
9a40e4f
922e0e8
074c4ae
2f89158
074c4ae
 
 
922e0e8
074c4ae
 
 
922e0e8
0a431d7
 
 
 
 
 
 
 
 
 
 
 
 
 
25268db
 
0a431d7
 
 
 
 
 
3057ef1
 
0a431d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e2cb7
0a431d7
 
 
 
05e2cb7
0a431d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e2cb7
0a431d7
 
 
 
 
 
 
 
05e2cb7
0a431d7
074c4ae
0a431d7
05e2cb7
a9fbe7d
9a40e4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr

from lmp import LMP, LMPFGen
from sim import PickPlaceEnv, LMP_wrapper
from consts import ALL_BLOCKS, ALL_BOWLS
from md_logger import MarkdownLogger

default_open_ai_key = os.getenv('OPEN_AI_SECRET')
chain_of_thought_affix = ' with a step by step explanation'
ask_for_clarification_affix = ' or ask for clarification if you feel unclear'


class DemoRunner:

    def __init__(self):
        self._cfg = OmegaConf.to_container(OmegaConf.load('cfg.yaml'), resolve=True)
        self._env = None
        self._model_name = ''
        self._md_logger = MarkdownLogger()

    def make_LMP(self, env):
        # LMP env wrapper
        cfg = copy.deepcopy(self._cfg)
        cfg['env'] = {
            'init_objs': list(env.obj_name_to_id.keys()),
            'coords': cfg['tabletop_coords']
        }
        for vs in cfg['lmps'].values():
            vs['engine'] = self._model_name

        LMP_env = LMP_wrapper(env, cfg)
        # creating APIs that the LMPs can interact with
        fixed_vars = {
            'np': np
        }
        fixed_vars.update({
            name: eval(name)
            for name in shapely.geometry.__all__ + shapely.affinity.__all__
        })
        variable_vars = {
            k: getattr(LMP_env, k)
            for k in [
                'get_bbox', 'get_obj_pos', 'get_color', 'is_obj_visible', 'denormalize_xy',
                'put_first_on_second', 'get_obj_names',
                'get_corner_name', 'get_side_name',
            ]
        }
        # variable_vars['say'] = lambda msg: self._md_logger.log_text(f'Robot says: "{msg}"')
        variable_vars['say'] = lambda msg: self._md_logger.log_message(
            f'{msg}')

        # creating the function-generating LMP
        lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars, self._md_logger)

        # creating other low-level LMPs
        variable_vars.update({
            k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars, self._md_logger)
            for k in ['parse_obj_name', 'parse_position', 'parse_question', 'transform_shape_pts']
        })

        # creating the LMP that deals w/ high-level language commands
        lmp_tabletop_ui = LMP(
            'tabletop_ui', cfg['lmps']['tabletop_ui'], lmp_fgen, fixed_vars, variable_vars, self._md_logger
        )

        return lmp_tabletop_ui

    def setup(self, api_key, model_name, n_blocks, n_bowls):
        openai.api_key = api_key
        self._model_name = model_name

        self._env = PickPlaceEnv(render=True, high_res=True, high_frame_rate=False)
        list_idxs = np.random.choice(len(ALL_BLOCKS), size=max(n_blocks, n_bowls), replace=False)
        block_list = [ALL_BLOCKS[i] for i in list_idxs[:n_blocks]]
        bowl_list = [ALL_BOWLS[i] for i in list_idxs[:n_bowls]]
        obj_list = block_list + bowl_list
        self._env.reset(obj_list)

        self._lmp_tabletop_ui = self.make_LMP(self._env)

        info = '### Available Objects: \n- ' + '\n- '.join(obj_list)
        img = self._env.get_camera_image()

        return info, img

    def run(self, instruction, history):
        if self._env is None:
            return 'Please run setup first!', None, history

        self._env.cache_video = []
        self._md_logger.clear()

        try:
            self._lmp_tabletop_ui(instruction, f'objects = {self._env.object_list}')
        except Exception as e:
            return f'Error: {e}', None, history

        # Update chat messages
        for message in self._md_logger.get_messages():
            history.append((None, message))

        if self._env.cache_video:
            rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
            video_file_name = NamedTemporaryFile(suffix='.mp4').name
            rendered_clip.write_videofile(video_file_name, fps=25)
            history.append((None, (video_file_name, )))

        return self._md_logger.get_log(), self._env.get_camera_image(), history


def setup(api_key, model_name, n_blocks, n_bowls):
    if not api_key:
        return 'Please enter your OpenAI API key!', None
    if n_blocks + n_bowls == 0:
        return 'Please select at least one object!', None

    demo_runner = DemoRunner()

    info, img = demo_runner.setup(api_key, model_name, n_blocks, n_bowls)
    welcome_message = 'How can I help you?'
    return info, img, demo_runner, [(None, welcome_message)], None


def run(demo_runner, chat_history):
    if demo_runner is None:
        return 'Please run setup first!', None, None, chat_history, None
    instruction = chat_history[-1][0]
    return *demo_runner.run(instruction, chat_history), ''

def submit_chat(chat_message, history):
    history += [[chat_message, None]]
    return '', history

def add_cot(chat_messsage):
    return chat_messsage.strip() + chain_of_thought_affix

def add_clarification(chat_message):
    return chat_message.strip() + ask_for_clarification_affix


with open('README.md', 'r') as f:
    for _ in range(12):
        next(f)
    readme_text = f.read()

with gr.Blocks() as demo:
    state = gr.State(None)
    with gr.Accordion('Readme', open=False):
        gr.Markdown(readme_text)
    gr.Markdown('# Interactive Demo')
    with gr.Row():
        with gr.Column():
            with gr.Row():
                inp_api_key = gr.Textbox(value=default_open_ai_key,
                                            label='OpenAI API Key (this is not stored anywhere)', lines=1)
                inp_model_name = gr.Dropdown(label='Model Name', choices=[
                                             'text-davinci-003', 'code-davinci-002', 'text-davinci-002'], value='text-davinci-003')
            with gr.Row():
                inp_n_blocks = gr.Slider(label='Number of Blocks', minimum=0, maximum=5, value=3, step=1)
                inp_n_bowls = gr.Slider(label='Number of Bowls', minimum=0, maximum=5, value=3, step=1)

            btn_setup = gr.Button("Setup/Reset Simulation")
            info_setup = gr.Markdown(label='Setup Info')

    with gr.Row():
        with gr.Column():
            chat_box = gr.Chatbot()
            inp_instruction = gr.Textbox(label='Instruction', lines=1)
            examples = gr.Examples(
                [
                    'stack two of the blocks',
                    'what color is the rightmost block?',
                    'arrange the blocks into figure 3',
                    'put blocks into non-matching bowls',
                    'swap the positions of one block and another',
                ],
                inp_instruction,
            )
            btn_add_cot = gr.Button(f'+{chain_of_thought_affix} (chain-of-thought)')
            btn_add_cla = gr.Button(
                f'+{ask_for_clarification_affix} (conversation)')
            btn_run = gr.Button("Run (this may take 30+ seconds)")
            info_run = gr.Markdown(label='Generated Code')
        with gr.Column():
            img_setup = gr.Image(label='Current Simulation State')
            # video_run = gr.Video(label='Most Recent Manipulation')

    btn_setup.click(
        setup,
        inputs=[inp_api_key, inp_model_name, inp_n_blocks, inp_n_bowls],
        outputs=[info_setup, img_setup, state, chat_box, info_run],
    )
    btn_add_cot.click(
        add_cot,
        inp_instruction,
        inp_instruction,
    )
    btn_add_cla.click(
        add_clarification,
        inp_instruction,
        inp_instruction,
    )
    btn_run.click(
        submit_chat,
        [inp_instruction, chat_box],
        [inp_instruction, chat_box],
    ).then(
        run,
        inputs=[state, chat_box],
        outputs=[info_run, img_setup, chat_box, inp_instruction],
    )
    inp_instruction.submit(
        submit_chat,
        [inp_instruction, chat_box],
        [inp_instruction, chat_box],
    ).then(
        run,
        inputs=[state, chat_box],
        outputs=[info_run, img_setup, chat_box, inp_instruction],
    )

if __name__ == '__main__':
    print(gr.__version__)
    demo.queue(concurrency_count=10)
    demo.launch()