File size: 1,722 Bytes
f723129 33469f2 f723129 33469f2 f723129 33469f2 f723129 b6b84c7 f723129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import { AutoComplete as PrimeAutoComplete } from 'primereact/autocomplete'
import { useState } from 'react'
const AutoComplete = ({ allSuggestions, onComplete }) => {
const [autoComplete, setAutoComplete] = useState('')
const [suggestions, setSuggestions] = useState([])
const search = e => {
const matches = allSuggestions.filter(suggestion =>
suggestion.searchText.includes(e.query.toLowerCase())
)
setSuggestions(matches)
}
const itemTemplate = item => {
let detail
if (item.type === "Dataset") {
detail = <span>
{item.detail.map(task => <span key={task} style={{ color: "gray", marginLeft: '1rem', backgroundColor: 'lightgray', padding: '0.2rem', borderRadius: '0.2rem' }}>{task}</span>)}
</span>
} else if (item.detail) {
detail = <span style={{ color: 'gray', marginLeft: '1rem' }}>{item.detail}</span>
} else {
detail = null
}
return (
<div
style={{
display: 'flex',
flexDirection: 'row',
justifyContent: 'space-between',
}}
>
<span>{item.value}{detail}</span>
<span style={{ color: 'gray' }}>{item.type}</span>
</div>
)
}
return (
<PrimeAutoComplete
placeholder='Search for model, language, or dataset'
value={autoComplete}
onChange={e => setAutoComplete(e.value)}
onSelect={e => {
setAutoComplete(e.value.value)
onComplete(e.value)
}}
suggestions={suggestions}
completeMethod={search}
virtualScrollerOptions={{ itemSize: 50 }}
delay={500}
autoHighlight
autoFocus
itemTemplate={itemTemplate}
/>
)
}
export default AutoComplete
|