Spaces:
Sleeping
Sleeping
File size: 7,084 Bytes
75c75cb e7af180 e602a6e 619fe5f e602a6e 75c75cb e7af180 7cbb868 75c75cb e602a6e 619fe5f e602a6e 75c75cb e602a6e 75c75cb e602a6e 619fe5f e602a6e 75c75cb e602a6e e7af180 75c75cb e7af180 e602a6e 619fe5f e602a6e 619fe5f 75c75cb 619fe5f 75c75cb e7af180 75c75cb e602a6e 619fe5f e602a6e 619fe5f 75c75cb e602a6e e7af180 e602a6e e7af180 619fe5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import google.generativeai as palm
import streamlit as st
import pandas as pd
import faiss
import hdbscan
from sklearn.feature_extraction.text import CountVectorizer
from src.modelling.topics.topic_extractor import (
TopicExtractionConfig, TopicExtractor
)
from src.modelling.topics.class_tf_idf import ClassTfidfTransformer
from src import deploy_utils
def get_prompt(title, reviews):
return f"""We are doing a marketing research analysis, in particular we are trying to understand what users thing about a particular market in order to generate tips for future sellers.
In particular, we are interesting to analyze the market for "{title}"
This is what amazon customers are saying about similar products:
{reviews}
Can you write some recomendations about how can we disrupt this market? Try to propose the necesary methodology to create a breaking product."""
def get_prompt_without_reviews(title):
return f"""We are doing a marketing research analysis, in particular we are trying to understand what users thing about a particular market in order to generate tips for future sellers.
In particular, we are interesting to analyze the market for "{title}"
Can you write some recomendations about how can we disrupt this market? Try to propose the necesary methodology to create a breaking product."""
no_electronics_message = """
Sorry, we are currently only recommending business that operate around electronics. Would you like to input another search?
This doesn't mean you make a mistake, I search amazon products and try to extract relevant reviews from similar products and we didn't find relevant products for your search.
#### Maybe you are way ahead of the market!
```
.
___,,,
\_[o o]
Errare humanum est! C\ _\/
/ _____),_/__
________ / \/ /
_| .| / o /
| | .| / /
\| .| / /
|________| /_ \/
__|___|__ _//\ \\
_____|_________|____ \ \ \ \\
_| /// \ \\
| \ /
| / /
| / /
________________ | /__ /_
...|_|.............. /______\.......
```
"""
TEST_MODE = False
def setup_palm():
palm.configure(api_key=os.environ.get('PALM_TOKEN'))
@st.cache_data
def load_data():
reviews = pd.read_csv("data/filtered_reviews.csv").set_index("reviewID")
products = pd.read_csv("data/products.csv")
return reviews, products
def load_uncached_models():
topic_extraction_config = TopicExtractionConfig(
vectorizer_model=CountVectorizer(
ngram_range=(1, 3), stop_words="english"),
ctfidf_model=ClassTfidfTransformer(reduce_frequent_words=True),
number_of_representative_documents=5,
review_text_key="summary",
)
topic_extractor = TopicExtractor(topic_extraction_config)
clusterer = hdbscan.HDBSCAN(
min_cluster_size=5, min_samples=5, metric="precomputed")
return topic_extractor, clusterer
@st.cache_resource
def load_models():
product_model = deploy_utils.load_model("all-MiniLM-L6-v2")
reviews_model = deploy_utils.load_model(
"https://tfhub.dev/google/universal-sentence-encoder/4"
)
product_indexer = faiss.read_index("vectordb/populated.index")
return reviews_model, product_model, product_indexer
def render_cta_link(url, label, font_awesome_icon):
st.markdown(
'<link rel="stylesheet" href="<https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css>">',
unsafe_allow_html=True,
)
button_code = f"""<a href="{url}" target=_blank><i class="fa {font_awesome_icon}"></i> {label}</a>"""
return st.markdown(button_code, unsafe_allow_html=True)
def handler_review_query():
relevant_products = deploy_utils.query_relevant_documents(
product_model=product_model,
indexer=product_indexer,
products=products,
query_text=st.session_state.user_search_query,
)
# TODO: check if there are relevant products
if len(relevant_products) == 0:
st.session_state.user_prompt = None
st.session_state.palm_output = no_electronics_message
return
relevant_reviews = deploy_utils.get_relevant_reviews(
relevant_products, reviews)
raw_topic_assigment = deploy_utils.clusterize_reviews(
relevant_reviews, reviews_model, clusterer)
relevant_reviews["topic"] = raw_topic_assigment
reviews_with_topics = relevant_reviews[relevant_reviews["topic"] != -1]
# TODO: check if there are still topics
extracted_topics = topic_extractor(reviews_with_topics)
key_reviews = deploy_utils.get_key_reviews(
reviews_with_topics,
extracted_topics,
)
reviews_prompt = deploy_utils.key_reviews_to_prompt(key_reviews)
prompt = get_prompt(st.session_state.user_search_query, reviews_prompt)
st.session_state.user_prompt = prompt
def handler_product_without_reviews():
st.session_state.user_prompt = get_prompt_without_reviews(
st.session_state.user_search_query)
def palm_handler():
response = palm.generate_text(prompt=st.session_state.user_prompt)
st.session_state.palm_output = response.result
def render_search():
"""
Render the search form in the sidebar.
"""
with st.sidebar:
query = st.text_input(
label="What kind of product are you trying to sell?",
placeholder="Your magic idea goes here ✨",
key="user_search_query",
)
if query:
try:
handler_review_query()
except:
handler_product_without_reviews()
if TEST_MODE:
_ = st.text_area(
label="test env",
placeholder="prompt here",
key="user_prompt"
)
if "user_prompt" in st.session_state and st.session_state.user_prompt:
palm_handler()
st.write("---")
render_cta_link(
url="https://github.com/CamiVasz/factored-datathon-2023-almond",
label="Check the code",
font_awesome_icon="fa-github",
)
def render_palm_results():
# TODO: temporal
st.write("# ALMond recommendations")
st.write(st.session_state.palm_output)
# Execution start here!
st.set_page_config(
page_title="almond - demo",
page_icon="🔍",
layout="wide",
initial_sidebar_state="expanded",
)
setup_palm()
reviews, products = load_data()
reviews_model, product_model, product_indexer = load_models()
topic_extractor, clusterer = load_uncached_models()
render_search()
if "palm_output" in st.session_state:
render_palm_results()
|