File size: 16,833 Bytes
8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import trimesh
import gradio as gr
import numpy as np
import matplotlib
from scipy.spatial.transform import Rotation
import copy
import cv2
import os
import requests
def predictions_to_glb(
predictions,
conf_thres=50.0,
filter_by_frames="all",
mask_black_bg=False,
mask_white_bg=False,
show_cam=True,
mask_sky=False,
target_dir=None,
prediction_mode="Predicted Pointmap",
) -> trimesh.Scene:
"""
Converts VGGT predictions to a 3D scene represented as a GLB file.
Args:
predictions (dict): Dictionary containing model predictions with keys:
- world_points: 3D point coordinates (S, H, W, 3)
- world_points_conf: Confidence scores (S, H, W)
- images: Input images (S, H, W, 3)
- extrinsic: Camera extrinsic matrices (S, 3, 4)
conf_thres (float): Percentage of low-confidence points to filter out (default: 50.0)
filter_by_frames (str): Frame filter specification (default: "all")
mask_black_bg (bool): Mask out black background pixels (default: False)
mask_white_bg (bool): Mask out white background pixels (default: False)
show_cam (bool): Include camera visualization (default: True)
mask_sky (bool): Apply sky segmentation mask (default: False)
target_dir (str): Output directory for intermediate files (default: None)
prediction_mode (str): Prediction mode selector (default: "Predicted Pointmap")
Returns:
trimesh.Scene: Processed 3D scene containing point cloud and cameras
Raises:
ValueError: If input predictions structure is invalid
"""
if not isinstance(predictions, dict):
raise ValueError("predictions must be a dictionary")
if conf_thres is None:
conf_thres = 10.0
print("Building GLB scene")
selected_frame_idx = None
if filter_by_frames != "all" and filter_by_frames != "All":
try:
# Extract the index part before the colon
selected_frame_idx = int(filter_by_frames.split(":")[0])
except (ValueError, IndexError):
pass
if "Pointmap" in prediction_mode:
print("Using Pointmap Branch")
if "world_points" in predictions:
pred_world_points = predictions["world_points"] # No batch dimension to remove
pred_world_points_conf = predictions.get("world_points_conf", np.ones_like(pred_world_points[..., 0]))
else:
print("Warning: world_points not found in predictions, falling back to depth-based points")
pred_world_points = predictions["world_points_from_depth"]
pred_world_points_conf = predictions.get("depth_conf", np.ones_like(pred_world_points[..., 0]))
else:
print("Using Depthmap and Camera Branch")
pred_world_points = predictions["world_points_from_depth"]
pred_world_points_conf = predictions.get("depth_conf", np.ones_like(pred_world_points[..., 0]))
# Get images from predictions
images = predictions["images"]
# Use extrinsic matrices instead of pred_extrinsic_list
camera_matrices = predictions["extrinsic"]
if mask_sky:
if target_dir is not None:
import onnxruntime
skyseg_session = None
target_dir_images = target_dir + "/images"
image_list = sorted(os.listdir(target_dir_images))
sky_mask_list = []
# Get the shape of pred_world_points_conf to match
S, H, W = (
pred_world_points_conf.shape
if hasattr(pred_world_points_conf, "shape")
else (len(images), images.shape[1], images.shape[2])
)
# Download skyseg.onnx if it doesn't exist
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_file_from_url(
"https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx", "skyseg.onnx"
)
for i, image_name in enumerate(image_list):
image_filepath = os.path.join(target_dir_images, image_name)
mask_filepath = os.path.join(target_dir, "sky_masks", image_name)
# Check if mask already exists
if os.path.exists(mask_filepath):
# Load existing mask
sky_mask = cv2.imread(mask_filepath, cv2.IMREAD_GRAYSCALE)
else:
# Generate new mask
if skyseg_session is None:
skyseg_session = onnxruntime.InferenceSession("skyseg.onnx")
sky_mask = segment_sky(image_filepath, skyseg_session, mask_filepath)
# Resize mask to match H×W if needed
if sky_mask.shape[0] != H or sky_mask.shape[1] != W:
sky_mask = cv2.resize(sky_mask, (W, H))
sky_mask_list.append(sky_mask)
# Convert list to numpy array with shape S×H×W
sky_mask_array = np.array(sky_mask_list)
# Apply sky mask to confidence scores
sky_mask_binary = (sky_mask_array > 0.1).astype(np.float32)
pred_world_points_conf = pred_world_points_conf * sky_mask_binary
if selected_frame_idx is not None:
pred_world_points = pred_world_points[selected_frame_idx][None]
pred_world_points_conf = pred_world_points_conf[selected_frame_idx][None]
images = images[selected_frame_idx][None]
camera_matrices = camera_matrices[selected_frame_idx][None]
vertices_3d = pred_world_points.reshape(-1, 3)
# Handle different image formats - check if images need transposing
if images.ndim == 4 and images.shape[1] == 3: # NCHW format
colors_rgb = np.transpose(images, (0, 2, 3, 1))
else: # Assume already in NHWC format
colors_rgb = images
colors_rgb = (colors_rgb.reshape(-1, 3) * 255).astype(np.uint8)
conf = pred_world_points_conf.reshape(-1)
# Convert percentage threshold to actual confidence value
if conf_thres == 0.0:
conf_threshold = 0.0
else:
conf_threshold = np.percentile(conf, conf_thres)
conf_mask = (conf >= conf_threshold) & (conf > 1e-5)
if mask_black_bg:
black_bg_mask = colors_rgb.sum(axis=1) >= 16
conf_mask = conf_mask & black_bg_mask
if mask_white_bg:
# Filter out white background pixels (RGB values close to white)
# Consider pixels white if all RGB values are above 240
white_bg_mask = ~((colors_rgb[:, 0] > 240) & (colors_rgb[:, 1] > 240) & (colors_rgb[:, 2] > 240))
conf_mask = conf_mask & white_bg_mask
vertices_3d = vertices_3d[conf_mask]
colors_rgb = colors_rgb[conf_mask]
if vertices_3d is None or np.asarray(vertices_3d).size == 0:
vertices_3d = np.array([[1, 0, 0]])
colors_rgb = np.array([[255, 255, 255]])
scene_scale = 1
else:
# Calculate the 5th and 95th percentiles along each axis
lower_percentile = np.percentile(vertices_3d, 5, axis=0)
upper_percentile = np.percentile(vertices_3d, 95, axis=0)
# Calculate the diagonal length of the percentile bounding box
scene_scale = np.linalg.norm(upper_percentile - lower_percentile)
colormap = matplotlib.colormaps.get_cmap("gist_rainbow")
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
scene_3d.add_geometry(point_cloud_data)
# Prepare 4x4 matrices for camera extrinsics
num_cameras = len(camera_matrices)
extrinsics_matrices = np.zeros((num_cameras, 4, 4))
extrinsics_matrices[:, :3, :4] = camera_matrices
extrinsics_matrices[:, 3, 3] = 1
if show_cam:
# Add camera models to the scene
for i in range(num_cameras):
world_to_camera = extrinsics_matrices[i]
camera_to_world = np.linalg.inv(world_to_camera)
rgba_color = colormap(i / num_cameras)
current_color = tuple(int(255 * x) for x in rgba_color[:3])
integrate_camera_into_scene(scene_3d, camera_to_world, current_color, scene_scale)
# Align scene to the observation of the first camera
scene_3d = apply_scene_alignment(scene_3d, extrinsics_matrices)
print("GLB Scene built")
return scene_3d
def integrate_camera_into_scene(
scene: trimesh.Scene,
transform: np.ndarray,
face_colors: tuple,
scene_scale: float,
):
"""
Integrates a fake camera mesh into the 3D scene.
Args:
scene (trimesh.Scene): The 3D scene to add the camera model.
transform (np.ndarray): Transformation matrix for camera positioning.
face_colors (tuple): Color of the camera face.
scene_scale (float): Scale of the scene.
"""
cam_width = scene_scale * 0.05
cam_height = scene_scale * 0.1
# Create cone shape for camera
rot_45_degree = np.eye(4)
rot_45_degree[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
rot_45_degree[2, 3] = -cam_height
opengl_transform = get_opengl_conversion_matrix()
# Combine transformations
complete_transform = transform @ opengl_transform @ rot_45_degree
camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)
# Generate mesh for the camera
slight_rotation = np.eye(4)
slight_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()
vertices_combined = np.concatenate(
[
camera_cone_shape.vertices,
0.95 * camera_cone_shape.vertices,
transform_points(slight_rotation, camera_cone_shape.vertices),
]
)
vertices_transformed = transform_points(complete_transform, vertices_combined)
mesh_faces = compute_camera_faces(camera_cone_shape)
# Add the camera mesh to the scene
camera_mesh = trimesh.Trimesh(vertices=vertices_transformed, faces=mesh_faces)
camera_mesh.visual.face_colors[:, :3] = face_colors
scene.add_geometry(camera_mesh)
def apply_scene_alignment(scene_3d: trimesh.Scene, extrinsics_matrices: np.ndarray) -> trimesh.Scene:
"""
Aligns the 3D scene based on the extrinsics of the first camera.
Args:
scene_3d (trimesh.Scene): The 3D scene to be aligned.
extrinsics_matrices (np.ndarray): Camera extrinsic matrices.
Returns:
trimesh.Scene: Aligned 3D scene.
"""
# Set transformations for scene alignment
opengl_conversion_matrix = get_opengl_conversion_matrix()
# Rotation matrix for alignment (180 degrees around the y-axis)
align_rotation = np.eye(4)
align_rotation[:3, :3] = Rotation.from_euler("y", 180, degrees=True).as_matrix()
# Apply transformation
initial_transformation = np.linalg.inv(extrinsics_matrices[0]) @ opengl_conversion_matrix @ align_rotation
scene_3d.apply_transform(initial_transformation)
return scene_3d
def get_opengl_conversion_matrix() -> np.ndarray:
"""
Constructs and returns the OpenGL conversion matrix.
Returns:
numpy.ndarray: A 4x4 OpenGL conversion matrix.
"""
# Create an identity matrix
matrix = np.identity(4)
# Flip the y and z axes
matrix[1, 1] = -1
matrix[2, 2] = -1
return matrix
def transform_points(transformation: np.ndarray, points: np.ndarray, dim: int = None) -> np.ndarray:
"""
Applies a 4x4 transformation to a set of points.
Args:
transformation (np.ndarray): Transformation matrix.
points (np.ndarray): Points to be transformed.
dim (int, optional): Dimension for reshaping the result.
Returns:
np.ndarray: Transformed points.
"""
points = np.asarray(points)
initial_shape = points.shape[:-1]
dim = dim or points.shape[-1]
# Apply transformation
transformation = transformation.swapaxes(-1, -2) # Transpose the transformation matrix
points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]
# Reshape the result
result = points[..., :dim].reshape(*initial_shape, dim)
return result
def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
"""
Computes the faces for the camera mesh.
Args:
cone_shape (trimesh.Trimesh): The shape of the camera cone.
Returns:
np.ndarray: Array of faces for the camera mesh.
"""
# Create pseudo cameras
faces_list = []
num_vertices_cone = len(cone_shape.vertices)
for face in cone_shape.faces:
if 0 in face:
continue
v1, v2, v3 = face
v1_offset, v2_offset, v3_offset = face + num_vertices_cone
v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone
faces_list.extend(
[
(v1, v2, v2_offset),
(v1, v1_offset, v3),
(v3_offset, v2, v3),
(v1, v2, v2_offset_2),
(v1, v1_offset_2, v3),
(v3_offset_2, v2, v3),
]
)
faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
return np.array(faces_list)
def segment_sky(image_path, onnx_session, mask_filename=None):
"""
Segments sky from an image using an ONNX model.
Thanks for the great model provided by https://github.com/xiongzhu666/Sky-Segmentation-and-Post-processing
Args:
image_path: Path to input image
onnx_session: ONNX runtime session with loaded model
mask_filename: Path to save the output mask
Returns:
np.ndarray: Binary mask where 255 indicates non-sky regions
"""
assert mask_filename is not None
image = cv2.imread(image_path)
result_map = run_skyseg(onnx_session, [320, 320], image)
# resize the result_map to the original image size
result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))
# Fix: Invert the mask so that 255 = non-sky, 0 = sky
# The model outputs low values for sky, high values for non-sky
output_mask = np.zeros_like(result_map_original)
output_mask[result_map_original < 32] = 255 # Use threshold of 32
os.makedirs(os.path.dirname(mask_filename), exist_ok=True)
cv2.imwrite(mask_filename, output_mask)
return output_mask
def run_skyseg(onnx_session, input_size, image):
"""
Runs sky segmentation inference using ONNX model.
Args:
onnx_session: ONNX runtime session
input_size: Target size for model input (width, height)
image: Input image in BGR format
Returns:
np.ndarray: Segmentation mask
"""
# Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
temp_image = copy.deepcopy(image)
resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
x = np.array(x, dtype=np.float32)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x = (x / 255 - mean) / std
x = x.transpose(2, 0, 1)
x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")
# Inference
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name
onnx_result = onnx_session.run([output_name], {input_name: x})
# Post process
onnx_result = np.array(onnx_result).squeeze()
min_value = np.min(onnx_result)
max_value = np.max(onnx_result)
onnx_result = (onnx_result - min_value) / (max_value - min_value)
onnx_result *= 255
onnx_result = onnx_result.astype("uint8")
return onnx_result
def download_file_from_url(url, filename):
"""Downloads a file from a Hugging Face model repo, handling redirects."""
try:
# Get the redirect URL
response = requests.get(url, allow_redirects=False)
response.raise_for_status() # Raise HTTPError for bad requests (4xx or 5xx)
if response.status_code == 302: # Expecting a redirect
redirect_url = response.headers["Location"]
response = requests.get(redirect_url, stream=True)
response.raise_for_status()
else:
print(f"Unexpected status code: {response.status_code}")
return
with open(filename, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {filename} successfully.")
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
|