Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,948 Bytes
8866a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
import os
import warnings
from typing import List, Optional, Union
import torch
from .device_utils import Device, get_device, make_device
# from ..common.workaround import _safe_det_3x3
from .rotation_conversions import _axis_angle_rotation
def _safe_det_3x3(t: torch.Tensor):
"""
Fast determinant calculation for a batch of 3x3 matrices.
Note, result of this function might not be the same as `torch.det()`.
The differences might be in the last significant digit.
Args:
t: Tensor of shape (N, 3, 3).
Returns:
Tensor of shape (N) with determinants.
"""
det = (
t[..., 0, 0] * (t[..., 1, 1] * t[..., 2, 2] - t[..., 1, 2] * t[..., 2, 1])
- t[..., 0, 1] * (t[..., 1, 0] * t[..., 2, 2] - t[..., 2, 0] * t[..., 1, 2])
+ t[..., 0, 2] * (t[..., 1, 0] * t[..., 2, 1] - t[..., 2, 0] * t[..., 1, 1])
)
return det
class Transform3d:
"""
A Transform3d object encapsulates a batch of N 3D transformations, and knows
how to transform points and normal vectors. Suppose that t is a Transform3d;
then we can do the following:
.. code-block:: python
N = len(t)
points = torch.randn(N, P, 3)
normals = torch.randn(N, P, 3)
points_transformed = t.transform_points(points) # => (N, P, 3)
normals_transformed = t.transform_normals(normals) # => (N, P, 3)
BROADCASTING
Transform3d objects supports broadcasting. Suppose that t1 and tN are
Transform3d objects with len(t1) == 1 and len(tN) == N respectively. Then we
can broadcast transforms like this:
.. code-block:: python
t1.transform_points(torch.randn(P, 3)) # => (P, 3)
t1.transform_points(torch.randn(1, P, 3)) # => (1, P, 3)
t1.transform_points(torch.randn(M, P, 3)) # => (M, P, 3)
tN.transform_points(torch.randn(P, 3)) # => (N, P, 3)
tN.transform_points(torch.randn(1, P, 3)) # => (N, P, 3)
COMBINING TRANSFORMS
Transform3d objects can be combined in two ways: composing and stacking.
Composing is function composition. Given Transform3d objects t1, t2, t3,
the following all compute the same thing:
.. code-block:: python
y1 = t3.transform_points(t2.transform_points(t1.transform_points(x)))
y2 = t1.compose(t2).compose(t3).transform_points(x)
y3 = t1.compose(t2, t3).transform_points(x)
Composing transforms should broadcast.
.. code-block:: python
if len(t1) == 1 and len(t2) == N, then len(t1.compose(t2)) == N.
We can also stack a sequence of Transform3d objects, which represents
composition along the batch dimension; then the following should compute the
same thing.
.. code-block:: python
N, M = len(tN), len(tM)
xN = torch.randn(N, P, 3)
xM = torch.randn(M, P, 3)
y1 = torch.cat([tN.transform_points(xN), tM.transform_points(xM)], dim=0)
y2 = tN.stack(tM).transform_points(torch.cat([xN, xM], dim=0))
BUILDING TRANSFORMS
We provide convenience methods for easily building Transform3d objects
as compositions of basic transforms.
.. code-block:: python
# Scale by 0.5, then translate by (1, 2, 3)
t1 = Transform3d().scale(0.5).translate(1, 2, 3)
# Scale each axis by a different amount, then translate, then scale
t2 = Transform3d().scale(1, 3, 3).translate(2, 3, 1).scale(2.0)
t3 = t1.compose(t2)
tN = t1.stack(t3, t3)
BACKPROP THROUGH TRANSFORMS
When building transforms, we can also parameterize them by Torch tensors;
in this case we can backprop through the construction and application of
Transform objects, so they could be learned via gradient descent or
predicted by a neural network.
.. code-block:: python
s1_params = torch.randn(N, requires_grad=True)
t_params = torch.randn(N, 3, requires_grad=True)
s2_params = torch.randn(N, 3, requires_grad=True)
t = Transform3d().scale(s1_params).translate(t_params).scale(s2_params)
x = torch.randn(N, 3)
y = t.transform_points(x)
loss = compute_loss(y)
loss.backward()
with torch.no_grad():
s1_params -= lr * s1_params.grad
t_params -= lr * t_params.grad
s2_params -= lr * s2_params.grad
CONVENTIONS
We adopt a right-hand coordinate system, meaning that rotation about an axis
with a positive angle results in a counter clockwise rotation.
This class assumes that transformations are applied on inputs which
are row vectors. The internal representation of the Nx4x4 transformation
matrix is of the form:
.. code-block:: python
M = [
[Rxx, Ryx, Rzx, 0],
[Rxy, Ryy, Rzy, 0],
[Rxz, Ryz, Rzz, 0],
[Tx, Ty, Tz, 1],
]
To apply the transformation to points, which are row vectors, the latter are
converted to homogeneous (4D) coordinates and right-multiplied by the M matrix:
.. code-block:: python
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
[transformed_points, 1] ∝ [points, 1] @ M
"""
def __init__(
self, dtype: torch.dtype = torch.float32, device: Device = "cpu", matrix: Optional[torch.Tensor] = None
) -> None:
"""
Args:
dtype: The data type of the transformation matrix.
to be used if `matrix = None`.
device: The device for storing the implemented transformation.
If `matrix != None`, uses the device of input `matrix`.
matrix: A tensor of shape (4, 4) or of shape (minibatch, 4, 4)
representing the 4x4 3D transformation matrix.
If `None`, initializes with identity using
the specified `device` and `dtype`.
"""
if matrix is None:
self._matrix = torch.eye(4, dtype=dtype, device=device).view(1, 4, 4)
else:
if matrix.ndim not in (2, 3):
raise ValueError('"matrix" has to be a 2- or a 3-dimensional tensor.')
if matrix.shape[-2] != 4 or matrix.shape[-1] != 4:
raise ValueError('"matrix" has to be a tensor of shape (minibatch, 4, 4) or (4, 4).')
# set dtype and device from matrix
dtype = matrix.dtype
device = matrix.device
self._matrix = matrix.view(-1, 4, 4)
self._transforms = [] # store transforms to compose
self._lu = None
self.device = make_device(device)
self.dtype = dtype
def __len__(self) -> int:
return self.get_matrix().shape[0]
def __getitem__(self, index: Union[int, List[int], slice, torch.BoolTensor, torch.LongTensor]) -> "Transform3d":
"""
Args:
index: Specifying the index of the transform to retrieve.
Can be an int, slice, list of ints, boolean, long tensor.
Supports negative indices.
Returns:
Transform3d object with selected transforms. The tensors are not cloned.
"""
if isinstance(index, int):
index = [index]
return self.__class__(matrix=self.get_matrix()[index])
def compose(self, *others: "Transform3d") -> "Transform3d":
"""
Return a new Transform3d representing the composition of self with the
given other transforms, which will be stored as an internal list.
Args:
*others: Any number of Transform3d objects
Returns:
A new Transform3d with the stored transforms
"""
out = Transform3d(dtype=self.dtype, device=self.device)
out._matrix = self._matrix.clone()
for other in others:
if not isinstance(other, Transform3d):
msg = "Only possible to compose Transform3d objects; got %s"
raise ValueError(msg % type(other))
out._transforms = self._transforms + list(others)
return out
def get_matrix(self) -> torch.Tensor:
"""
Returns a 4×4 matrix corresponding to each transform in the batch.
If the transform was composed from others, the matrix for the composite
transform will be returned.
For example, if self.transforms contains transforms t1, t2, and t3, and
given a set of points x, the following should be true:
.. code-block:: python
y1 = t1.compose(t2, t3).transform(x)
y2 = t3.transform(t2.transform(t1.transform(x)))
y1.get_matrix() == y2.get_matrix()
Where necessary, those transforms are broadcast against each other.
Returns:
A (N, 4, 4) batch of transformation matrices representing
the stored transforms. See the class documentation for the conventions.
"""
composed_matrix = self._matrix.clone()
if len(self._transforms) > 0:
for other in self._transforms:
other_matrix = other.get_matrix()
composed_matrix = _broadcast_bmm(composed_matrix, other_matrix)
return composed_matrix
def _get_matrix_inverse(self) -> torch.Tensor:
"""
Return the inverse of self._matrix.
"""
return torch.inverse(self._matrix)
def inverse(self, invert_composed: bool = False) -> "Transform3d":
"""
Returns a new Transform3d object that represents an inverse of the
current transformation.
Args:
invert_composed:
- True: First compose the list of stored transformations
and then apply inverse to the result. This is
potentially slower for classes of transformations
with inverses that can be computed efficiently
(e.g. rotations and translations).
- False: Invert the individual stored transformations
independently without composing them.
Returns:
A new Transform3d object containing the inverse of the original
transformation.
"""
tinv = Transform3d(dtype=self.dtype, device=self.device)
if invert_composed:
# first compose then invert
tinv._matrix = torch.inverse(self.get_matrix())
else:
# self._get_matrix_inverse() implements efficient inverse
# of self._matrix
i_matrix = self._get_matrix_inverse()
# 2 cases:
if len(self._transforms) > 0:
# a) Either we have a non-empty list of transforms:
# Here we take self._matrix and append its inverse at the
# end of the reverted _transforms list. After composing
# the transformations with get_matrix(), this correctly
# right-multiplies by the inverse of self._matrix
# at the end of the composition.
tinv._transforms = [t.inverse() for t in reversed(self._transforms)]
last = Transform3d(dtype=self.dtype, device=self.device)
last._matrix = i_matrix
tinv._transforms.append(last)
else:
# b) Or there are no stored transformations
# we just set inverted matrix
tinv._matrix = i_matrix
return tinv
def stack(self, *others: "Transform3d") -> "Transform3d":
"""
Return a new batched Transform3d representing the batch elements from
self and all the given other transforms all batched together.
Args:
*others: Any number of Transform3d objects
Returns:
A new Transform3d.
"""
transforms = [self] + list(others)
matrix = torch.cat([t.get_matrix() for t in transforms], dim=0)
out = Transform3d(dtype=self.dtype, device=self.device)
out._matrix = matrix
return out
def transform_points(self, points, eps: Optional[float] = None) -> torch.Tensor:
"""
Use this transform to transform a set of 3D points. Assumes row major
ordering of the input points.
Args:
points: Tensor of shape (P, 3) or (N, P, 3)
eps: If eps!=None, the argument is used to clamp the
last coordinate before performing the final division.
The clamping corresponds to:
last_coord := (last_coord.sign() + (last_coord==0)) *
torch.clamp(last_coord.abs(), eps),
i.e. the last coordinates that are exactly 0 will
be clamped to +eps.
Returns:
points_out: points of shape (N, P, 3) or (P, 3) depending
on the dimensions of the transform
"""
points_batch = points.clone()
if points_batch.dim() == 2:
points_batch = points_batch[None] # (P, 3) -> (1, P, 3)
if points_batch.dim() != 3:
msg = "Expected points to have dim = 2 or dim = 3: got shape %r"
raise ValueError(msg % repr(points.shape))
N, P, _3 = points_batch.shape
ones = torch.ones(N, P, 1, dtype=points.dtype, device=points.device)
points_batch = torch.cat([points_batch, ones], dim=2)
composed_matrix = self.get_matrix()
points_out = _broadcast_bmm(points_batch, composed_matrix)
denom = points_out[..., 3:] # denominator
if eps is not None:
denom_sign = denom.sign() + (denom == 0.0).type_as(denom)
denom = denom_sign * torch.clamp(denom.abs(), eps)
points_out = points_out[..., :3] / denom
# When transform is (1, 4, 4) and points is (P, 3) return
# points_out of shape (P, 3)
if points_out.shape[0] == 1 and points.dim() == 2:
points_out = points_out.reshape(points.shape)
return points_out
def transform_normals(self, normals) -> torch.Tensor:
"""
Use this transform to transform a set of normal vectors.
Args:
normals: Tensor of shape (P, 3) or (N, P, 3)
Returns:
normals_out: Tensor of shape (P, 3) or (N, P, 3) depending
on the dimensions of the transform
"""
if normals.dim() not in [2, 3]:
msg = "Expected normals to have dim = 2 or dim = 3: got shape %r"
raise ValueError(msg % (normals.shape,))
composed_matrix = self.get_matrix()
# TODO: inverse is bad! Solve a linear system instead
mat = composed_matrix[:, :3, :3]
normals_out = _broadcast_bmm(normals, mat.transpose(1, 2).inverse())
# This doesn't pass unit tests. TODO investigate further
# if self._lu is None:
# self._lu = self._matrix[:, :3, :3].transpose(1, 2).lu()
# normals_out = normals.lu_solve(*self._lu)
# When transform is (1, 4, 4) and normals is (P, 3) return
# normals_out of shape (P, 3)
if normals_out.shape[0] == 1 and normals.dim() == 2:
normals_out = normals_out.reshape(normals.shape)
return normals_out
def translate(self, *args, **kwargs) -> "Transform3d":
return self.compose(Translate(*args, device=self.device, dtype=self.dtype, **kwargs))
def scale(self, *args, **kwargs) -> "Transform3d":
return self.compose(Scale(*args, device=self.device, dtype=self.dtype, **kwargs))
def rotate(self, *args, **kwargs) -> "Transform3d":
return self.compose(Rotate(*args, device=self.device, dtype=self.dtype, **kwargs))
def rotate_axis_angle(self, *args, **kwargs) -> "Transform3d":
return self.compose(RotateAxisAngle(*args, device=self.device, dtype=self.dtype, **kwargs))
def clone(self) -> "Transform3d":
"""
Deep copy of Transforms object. All internal tensors are cloned
individually.
Returns:
new Transforms object.
"""
other = Transform3d(dtype=self.dtype, device=self.device)
if self._lu is not None:
other._lu = [elem.clone() for elem in self._lu]
other._matrix = self._matrix.clone()
other._transforms = [t.clone() for t in self._transforms]
return other
def to(self, device: Device, copy: bool = False, dtype: Optional[torch.dtype] = None) -> "Transform3d":
"""
Match functionality of torch.Tensor.to()
If copy = True or the self Tensor is on a different device, the
returned tensor is a copy of self with the desired torch.device.
If copy = False and the self Tensor already has the correct torch.device,
then self is returned.
Args:
device: Device (as str or torch.device) for the new tensor.
copy: Boolean indicator whether or not to clone self. Default False.
dtype: If not None, casts the internal tensor variables
to a given torch.dtype.
Returns:
Transform3d object.
"""
device_ = make_device(device)
dtype_ = self.dtype if dtype is None else dtype
skip_to = self.device == device_ and self.dtype == dtype_
if not copy and skip_to:
return self
other = self.clone()
if skip_to:
return other
other.device = device_
other.dtype = dtype_
other._matrix = other._matrix.to(device=device_, dtype=dtype_)
other._transforms = [t.to(device_, copy=copy, dtype=dtype_) for t in other._transforms]
return other
def cpu(self) -> "Transform3d":
return self.to("cpu")
def cuda(self) -> "Transform3d":
return self.to("cuda")
class Translate(Transform3d):
def __init__(self, x, y=None, z=None, dtype: torch.dtype = torch.float32, device: Optional[Device] = None) -> None:
"""
Create a new Transform3d representing 3D translations.
Option I: Translate(xyz, dtype=torch.float32, device='cpu')
xyz should be a tensor of shape (N, 3)
Option II: Translate(x, y, z, dtype=torch.float32, device='cpu')
Here x, y, and z will be broadcast against each other and
concatenated to form the translation. Each can be:
- A python scalar
- A torch scalar
- A 1D torch tensor
"""
xyz = _handle_input(x, y, z, dtype, device, "Translate")
super().__init__(device=xyz.device, dtype=dtype)
N = xyz.shape[0]
mat = torch.eye(4, dtype=dtype, device=self.device)
mat = mat.view(1, 4, 4).repeat(N, 1, 1)
mat[:, 3, :3] = xyz
self._matrix = mat
def _get_matrix_inverse(self) -> torch.Tensor:
"""
Return the inverse of self._matrix.
"""
inv_mask = self._matrix.new_ones([1, 4, 4])
inv_mask[0, 3, :3] = -1.0
i_matrix = self._matrix * inv_mask
return i_matrix
class Scale(Transform3d):
def __init__(self, x, y=None, z=None, dtype: torch.dtype = torch.float32, device: Optional[Device] = None) -> None:
"""
A Transform3d representing a scaling operation, with different scale
factors along each coordinate axis.
Option I: Scale(s, dtype=torch.float32, device='cpu')
s can be one of
- Python scalar or torch scalar: Single uniform scale
- 1D torch tensor of shape (N,): A batch of uniform scale
- 2D torch tensor of shape (N, 3): Scale differently along each axis
Option II: Scale(x, y, z, dtype=torch.float32, device='cpu')
Each of x, y, and z can be one of
- python scalar
- torch scalar
- 1D torch tensor
"""
xyz = _handle_input(x, y, z, dtype, device, "scale", allow_singleton=True)
super().__init__(device=xyz.device, dtype=dtype)
N = xyz.shape[0]
# TODO: Can we do this all in one go somehow?
mat = torch.eye(4, dtype=dtype, device=self.device)
mat = mat.view(1, 4, 4).repeat(N, 1, 1)
mat[:, 0, 0] = xyz[:, 0]
mat[:, 1, 1] = xyz[:, 1]
mat[:, 2, 2] = xyz[:, 2]
self._matrix = mat
def _get_matrix_inverse(self) -> torch.Tensor:
"""
Return the inverse of self._matrix.
"""
xyz = torch.stack([self._matrix[:, i, i] for i in range(4)], dim=1)
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
ixyz = 1.0 / xyz
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
imat = torch.diag_embed(ixyz, dim1=1, dim2=2)
return imat
class Rotate(Transform3d):
def __init__(
self,
R: torch.Tensor,
dtype: torch.dtype = torch.float32,
device: Optional[Device] = None,
orthogonal_tol: float = 1e-5,
) -> None:
"""
Create a new Transform3d representing 3D rotation using a rotation
matrix as the input.
Args:
R: a tensor of shape (3, 3) or (N, 3, 3)
orthogonal_tol: tolerance for the test of the orthogonality of R
"""
device_ = get_device(R, device)
super().__init__(device=device_, dtype=dtype)
if R.dim() == 2:
R = R[None]
if R.shape[-2:] != (3, 3):
msg = "R must have shape (3, 3) or (N, 3, 3); got %s"
raise ValueError(msg % repr(R.shape))
R = R.to(device=device_, dtype=dtype)
if os.environ.get("PYTORCH3D_CHECK_ROTATION_MATRICES", "0") == "1":
# Note: aten::all_close in the check is computationally slow, so we
# only run the check when PYTORCH3D_CHECK_ROTATION_MATRICES is on.
_check_valid_rotation_matrix(R, tol=orthogonal_tol)
N = R.shape[0]
mat = torch.eye(4, dtype=dtype, device=device_)
mat = mat.view(1, 4, 4).repeat(N, 1, 1)
mat[:, :3, :3] = R
self._matrix = mat
def _get_matrix_inverse(self) -> torch.Tensor:
"""
Return the inverse of self._matrix.
"""
return self._matrix.permute(0, 2, 1).contiguous()
class RotateAxisAngle(Rotate):
def __init__(
self,
angle,
axis: str = "X",
degrees: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[Device] = None,
) -> None:
"""
Create a new Transform3d representing 3D rotation about an axis
by an angle.
Assuming a right-hand coordinate system, positive rotation angles result
in a counter clockwise rotation.
Args:
angle:
- A torch tensor of shape (N,)
- A python scalar
- A torch scalar
axis:
string: one of ["X", "Y", "Z"] indicating the axis about which
to rotate.
NOTE: All batch elements are rotated about the same axis.
"""
axis = axis.upper()
if axis not in ["X", "Y", "Z"]:
msg = "Expected axis to be one of ['X', 'Y', 'Z']; got %s"
raise ValueError(msg % axis)
angle = _handle_angle_input(angle, dtype, device, "RotateAxisAngle")
angle = (angle / 180.0 * math.pi) if degrees else angle
# We assume the points on which this transformation will be applied
# are row vectors. The rotation matrix returned from _axis_angle_rotation
# is for transforming column vectors. Therefore we transpose this matrix.
# R will always be of shape (N, 3, 3)
R = _axis_angle_rotation(axis, angle).transpose(1, 2)
super().__init__(device=angle.device, R=R, dtype=dtype)
def _handle_coord(c, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
"""
Helper function for _handle_input.
Args:
c: Python scalar, torch scalar, or 1D torch tensor
Returns:
c_vec: 1D torch tensor
"""
if not torch.is_tensor(c):
c = torch.tensor(c, dtype=dtype, device=device)
if c.dim() == 0:
c = c.view(1)
if c.device != device or c.dtype != dtype:
c = c.to(device=device, dtype=dtype)
return c
def _handle_input(
x, y, z, dtype: torch.dtype, device: Optional[Device], name: str, allow_singleton: bool = False
) -> torch.Tensor:
"""
Helper function to handle parsing logic for building transforms. The output
is always a tensor of shape (N, 3), but there are several types of allowed
input.
Case I: Single Matrix
In this case x is a tensor of shape (N, 3), and y and z are None. Here just
return x.
Case II: Vectors and Scalars
In this case each of x, y, and z can be one of the following
- Python scalar
- Torch scalar
- Torch tensor of shape (N, 1) or (1, 1)
In this case x, y and z are broadcast to tensors of shape (N, 1)
and concatenated to a tensor of shape (N, 3)
Case III: Singleton (only if allow_singleton=True)
In this case y and z are None, and x can be one of the following:
- Python scalar
- Torch scalar
- Torch tensor of shape (N, 1) or (1, 1)
Here x will be duplicated 3 times, and we return a tensor of shape (N, 3)
Returns:
xyz: Tensor of shape (N, 3)
"""
device_ = get_device(x, device)
# If x is actually a tensor of shape (N, 3) then just return it
if torch.is_tensor(x) and x.dim() == 2:
if x.shape[1] != 3:
msg = "Expected tensor of shape (N, 3); got %r (in %s)"
raise ValueError(msg % (x.shape, name))
if y is not None or z is not None:
msg = "Expected y and z to be None (in %s)" % name
raise ValueError(msg)
return x.to(device=device_, dtype=dtype)
if allow_singleton and y is None and z is None:
y = x
z = x
# Convert all to 1D tensors
xyz = [_handle_coord(c, dtype, device_) for c in [x, y, z]]
# Broadcast and concatenate
sizes = [c.shape[0] for c in xyz]
N = max(sizes)
for c in xyz:
if c.shape[0] != 1 and c.shape[0] != N:
msg = "Got non-broadcastable sizes %r (in %s)" % (sizes, name)
raise ValueError(msg)
xyz = [c.expand(N) for c in xyz]
xyz = torch.stack(xyz, dim=1)
return xyz
def _handle_angle_input(x, dtype: torch.dtype, device: Optional[Device], name: str) -> torch.Tensor:
"""
Helper function for building a rotation function using angles.
The output is always of shape (N,).
The input can be one of:
- Torch tensor of shape (N,)
- Python scalar
- Torch scalar
"""
device_ = get_device(x, device)
if torch.is_tensor(x) and x.dim() > 1:
msg = "Expected tensor of shape (N,); got %r (in %s)"
raise ValueError(msg % (x.shape, name))
else:
return _handle_coord(x, dtype, device_)
def _broadcast_bmm(a, b) -> torch.Tensor:
"""
Batch multiply two matrices and broadcast if necessary.
Args:
a: torch tensor of shape (P, K) or (M, P, K)
b: torch tensor of shape (N, K, K)
Returns:
a and b broadcast multiplied. The output batch dimension is max(N, M).
To broadcast transforms across a batch dimension if M != N then
expect that either M = 1 or N = 1. The tensor with batch dimension 1 is
expanded to have shape N or M.
"""
if a.dim() == 2:
a = a[None]
if len(a) != len(b):
if not ((len(a) == 1) or (len(b) == 1)):
msg = "Expected batch dim for bmm to be equal or 1; got %r, %r"
raise ValueError(msg % (a.shape, b.shape))
if len(a) == 1:
a = a.expand(len(b), -1, -1)
if len(b) == 1:
b = b.expand(len(a), -1, -1)
return a.bmm(b)
@torch.no_grad()
def _check_valid_rotation_matrix(R, tol: float = 1e-7) -> None:
"""
Determine if R is a valid rotation matrix by checking it satisfies the
following conditions:
``RR^T = I and det(R) = 1``
Args:
R: an (N, 3, 3) matrix
Returns:
None
Emits a warning if R is an invalid rotation matrix.
"""
N = R.shape[0]
eye = torch.eye(3, dtype=R.dtype, device=R.device)
eye = eye.view(1, 3, 3).expand(N, -1, -1)
orthogonal = torch.allclose(R.bmm(R.transpose(1, 2)), eye, atol=tol)
det_R = _safe_det_3x3(R)
no_distortion = torch.allclose(det_R, torch.ones_like(det_R))
if not (orthogonal and no_distortion):
msg = "R is not a valid rotation matrix"
warnings.warn(msg)
return
|