Spaces:
Running
on
Zero
Running
on
Zero
File size: 69,437 Bytes
8866a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
# from pytorch3d.common.datatypes import Device
from .device_utils import Device, get_device, make_device
from .transform3d import Rotate, Transform3d, Translate
from .renderer_utils import convert_to_tensors_and_broadcast, TensorProperties
# Default values for rotation and translation matrices.
_R = torch.eye(3)[None] # (1, 3, 3)
_T = torch.zeros(1, 3) # (1, 3)
# An input which is a float per batch element
_BatchFloatType = Union[float, Sequence[float], torch.Tensor]
# one or two floats per batch element
_FocalLengthType = Union[float, Sequence[Tuple[float]], Sequence[Tuple[float, float]], torch.Tensor]
class CamerasBase(TensorProperties):
"""
`CamerasBase` implements a base class for all cameras.
For cameras, there are four different coordinate systems (or spaces)
- World coordinate system: This is the system the object lives - the world.
- Camera view coordinate system: This is the system that has its origin on
the camera and the Z-axis perpendicular to the image plane.
In PyTorch3D, we assume that +X points left, and +Y points up and
+Z points out from the image plane.
The transformation from world --> view happens after applying a rotation (R)
and translation (T)
- NDC coordinate system: This is the normalized coordinate system that confines
points in a volume the rendered part of the object or scene, also known as
view volume. For square images, given the PyTorch3D convention, (+1, +1, znear)
is the top left near corner, and (-1, -1, zfar) is the bottom right far
corner of the volume.
The transformation from view --> NDC happens after applying the camera
projection matrix (P) if defined in NDC space.
For non square images, we scale the points such that smallest side
has range [-1, 1] and the largest side has range [-u, u], with u > 1.
- Screen coordinate system: This is another representation of the view volume with
the XY coordinates defined in image space instead of a normalized space.
An illustration of the coordinate systems can be found in pytorch3d/docs/notes/cameras.md.
CameraBase defines methods that are common to all camera models:
- `get_camera_center` that returns the optical center of the camera in
world coordinates
- `get_world_to_view_transform` which returns a 3D transform from
world coordinates to the camera view coordinates (R, T)
- `get_full_projection_transform` which composes the projection
transform (P) with the world-to-view transform (R, T)
- `transform_points` which takes a set of input points in world coordinates and
projects to the space the camera is defined in (NDC or screen)
- `get_ndc_camera_transform` which defines the transform from screen/NDC to
PyTorch3D's NDC space
- `transform_points_ndc` which takes a set of points in world coordinates and
projects them to PyTorch3D's NDC space
- `transform_points_screen` which takes a set of points in world coordinates and
projects them to screen space
For each new camera, one should implement the `get_projection_transform`
routine that returns the mapping from camera view coordinates to camera
coordinates (NDC or screen).
Another useful function that is specific to each camera model is
`unproject_points` which sends points from camera coordinates (NDC or screen)
back to camera view or world coordinates depending on the `world_coordinates`
boolean argument of the function.
"""
# Used in __getitem__ to index the relevant fields
# When creating a new camera, this should be set in the __init__
_FIELDS: Tuple[str, ...] = ()
# Names of fields which are a constant property of the whole batch, rather
# than themselves a batch of data.
# When joining objects into a batch, they will have to agree.
_SHARED_FIELDS: Tuple[str, ...] = ()
def get_projection_transform(self, **kwargs):
"""
Calculate the projective transformation matrix.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a `Transform3d` object which represents a batch of projection
matrices of shape (N, 3, 3)
"""
raise NotImplementedError()
def unproject_points(self, xy_depth: torch.Tensor, **kwargs):
"""
Transform input points from camera coordinates (NDC or screen)
to the world / camera coordinates.
Each of the input points `xy_depth` of shape (..., 3) is
a concatenation of the x, y location and its depth.
For instance, for an input 2D tensor of shape `(num_points, 3)`
`xy_depth` takes the following form:
`xy_depth[i] = [x[i], y[i], depth[i]]`,
for a each point at an index `i`.
The following example demonstrates the relationship between
`transform_points` and `unproject_points`:
.. code-block:: python
cameras = # camera object derived from CamerasBase
xyz = # 3D points of shape (batch_size, num_points, 3)
# transform xyz to the camera view coordinates
xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
# extract the depth of each point as the 3rd coord of xyz_cam
depth = xyz_cam[:, :, 2:]
# project the points xyz to the camera
xy = cameras.transform_points(xyz)[:, :, :2]
# append depth to xy
xy_depth = torch.cat((xy, depth), dim=2)
# unproject to the world coordinates
xyz_unproj_world = cameras.unproject_points(xy_depth, world_coordinates=True)
print(torch.allclose(xyz, xyz_unproj_world)) # True
# unproject to the camera coordinates
xyz_unproj = cameras.unproject_points(xy_depth, world_coordinates=False)
print(torch.allclose(xyz_cam, xyz_unproj)) # True
Args:
xy_depth: torch tensor of shape (..., 3).
world_coordinates: If `True`, unprojects the points back to world
coordinates using the camera extrinsics `R` and `T`.
`False` ignores `R` and `T` and unprojects to
the camera view coordinates.
from_ndc: If `False` (default), assumes xy part of input is in
NDC space if self.in_ndc(), otherwise in screen space. If
`True`, assumes xy is in NDC space even if the camera
is defined in screen space.
Returns
new_points: unprojected points with the same shape as `xy_depth`.
"""
raise NotImplementedError()
def get_camera_center(self, **kwargs) -> torch.Tensor:
"""
Return the 3D location of the camera optical center
in the world coordinates.
Args:
**kwargs: parameters for the camera extrinsics can be passed in
as keyword arguments to override the default values
set in __init__.
Setting R or T here will update the values set in init as these
values may be needed later on in the rendering pipeline e.g. for
lighting calculations.
Returns:
C: a batch of 3D locations of shape (N, 3) denoting
the locations of the center of each camera in the batch.
"""
w2v_trans = self.get_world_to_view_transform(**kwargs)
P = w2v_trans.inverse().get_matrix()
# the camera center is the translation component (the first 3 elements
# of the last row) of the inverted world-to-view
# transform (4x4 RT matrix)
C = P[:, 3, :3]
return C
def get_world_to_view_transform(self, **kwargs) -> Transform3d:
"""
Return the world-to-view transform.
Args:
**kwargs: parameters for the camera extrinsics can be passed in
as keyword arguments to override the default values
set in __init__.
Setting R and T here will update the values set in init as these
values may be needed later on in the rendering pipeline e.g. for
lighting calculations.
Returns:
A Transform3d object which represents a batch of transforms
of shape (N, 3, 3)
"""
R: torch.Tensor = kwargs.get("R", self.R)
T: torch.Tensor = kwargs.get("T", self.T)
self.R = R
self.T = T
world_to_view_transform = get_world_to_view_transform(R=R, T=T)
return world_to_view_transform
def get_full_projection_transform(self, **kwargs) -> Transform3d:
"""
Return the full world-to-camera transform composing the
world-to-view and view-to-camera transforms.
If camera is defined in NDC space, the projected points are in NDC space.
If camera is defined in screen space, the projected points are in screen space.
Args:
**kwargs: parameters for the projection transforms can be passed in
as keyword arguments to override the default values
set in __init__.
Setting R and T here will update the values set in init as these
values may be needed later on in the rendering pipeline e.g. for
lighting calculations.
Returns:
a Transform3d object which represents a batch of transforms
of shape (N, 3, 3)
"""
self.R: torch.Tensor = kwargs.get("R", self.R)
self.T: torch.Tensor = kwargs.get("T", self.T)
world_to_view_transform = self.get_world_to_view_transform(R=self.R, T=self.T)
view_to_proj_transform = self.get_projection_transform(**kwargs)
return world_to_view_transform.compose(view_to_proj_transform)
def transform_points(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
"""
Transform input points from world to camera space.
If camera is defined in NDC space, the projected points are in NDC space.
If camera is defined in screen space, the projected points are in screen space.
For `CamerasBase.transform_points`, setting `eps > 0`
stabilizes gradients since it leads to avoiding division
by excessively low numbers for points close to the camera plane.
Args:
points: torch tensor of shape (..., 3).
eps: If eps!=None, the argument is used to clamp the
divisor in the homogeneous normalization of the points
transformed to the ndc space. Please see
`transforms.Transform3d.transform_points` for details.
For `CamerasBase.transform_points`, setting `eps > 0`
stabilizes gradients since it leads to avoiding division
by excessively low numbers for points close to the
camera plane.
Returns
new_points: transformed points with the same shape as the input.
"""
world_to_proj_transform = self.get_full_projection_transform(**kwargs)
return world_to_proj_transform.transform_points(points, eps=eps)
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
"""
Returns the transform from camera projection space (screen or NDC) to NDC space.
For cameras that can be specified in screen space, this transform
allows points to be converted from screen to NDC space.
The default transform scales the points from [0, W]x[0, H]
to [-1, 1]x[-u, u] or [-u, u]x[-1, 1] where u > 1 is the aspect ratio of the image.
This function should be modified per camera definitions if need be,
e.g. for Perspective/Orthographic cameras we provide a custom implementation.
This transform assumes PyTorch3D coordinate system conventions for
both the NDC space and the input points.
This transform interfaces with the PyTorch3D renderer which assumes
input points to the renderer to be in NDC space.
"""
if self.in_ndc():
return Transform3d(device=self.device, dtype=torch.float32)
else:
# For custom cameras which can be defined in screen space,
# users might might have to implement the screen to NDC transform based
# on the definition of the camera parameters.
# See PerspectiveCameras/OrthographicCameras for an example.
# We don't flip xy because we assume that world points are in
# PyTorch3D coordinates, and thus conversion from screen to ndc
# is a mere scaling from image to [-1, 1] scale.
image_size = kwargs.get("image_size", self.get_image_size())
return get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
def transform_points_ndc(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
"""
Transforms points from PyTorch3D world/camera space to NDC space.
Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
Output points are in NDC space: +X left, +Y up, origin at image center.
Args:
points: torch tensor of shape (..., 3).
eps: If eps!=None, the argument is used to clamp the
divisor in the homogeneous normalization of the points
transformed to the ndc space. Please see
`transforms.Transform3d.transform_points` for details.
For `CamerasBase.transform_points`, setting `eps > 0`
stabilizes gradients since it leads to avoiding division
by excessively low numbers for points close to the
camera plane.
Returns
new_points: transformed points with the same shape as the input.
"""
world_to_ndc_transform = self.get_full_projection_transform(**kwargs)
if not self.in_ndc():
to_ndc_transform = self.get_ndc_camera_transform(**kwargs)
world_to_ndc_transform = world_to_ndc_transform.compose(to_ndc_transform)
return world_to_ndc_transform.transform_points(points, eps=eps)
def transform_points_screen(
self, points, eps: Optional[float] = None, with_xyflip: bool = True, **kwargs
) -> torch.Tensor:
"""
Transforms points from PyTorch3D world/camera space to screen space.
Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
Output points are in screen space: +X right, +Y down, origin at top left corner.
Args:
points: torch tensor of shape (..., 3).
eps: If eps!=None, the argument is used to clamp the
divisor in the homogeneous normalization of the points
transformed to the ndc space. Please see
`transforms.Transform3d.transform_points` for details.
For `CamerasBase.transform_points`, setting `eps > 0`
stabilizes gradients since it leads to avoiding division
by excessively low numbers for points close to the
camera plane.
with_xyflip: If True, flip x and y directions. In world/camera/ndc coords,
+x points to the left and +y up. If with_xyflip is true, in screen
coords +x points right, and +y down, following the usual RGB image
convention. Warning: do not set to False unless you know what you're
doing!
Returns
new_points: transformed points with the same shape as the input.
"""
points_ndc = self.transform_points_ndc(points, eps=eps, **kwargs)
image_size = kwargs.get("image_size", self.get_image_size())
return get_ndc_to_screen_transform(self, with_xyflip=with_xyflip, image_size=image_size).transform_points(
points_ndc, eps=eps
)
def clone(self):
"""
Returns a copy of `self`.
"""
cam_type = type(self)
other = cam_type(device=self.device)
return super().clone(other)
def is_perspective(self):
raise NotImplementedError()
def in_ndc(self):
"""
Specifies whether the camera is defined in NDC space
or in screen (image) space
"""
raise NotImplementedError()
def get_znear(self):
return getattr(self, "znear", None)
def get_image_size(self):
"""
Returns the image size, if provided, expected in the form of (height, width)
The image size is used for conversion of projected points to screen coordinates.
"""
return getattr(self, "image_size", None)
def __getitem__(self, index: Union[int, List[int], torch.BoolTensor, torch.LongTensor]) -> "CamerasBase":
"""
Override for the __getitem__ method in TensorProperties which needs to be
refactored.
Args:
index: an integer index, list/tensor of integer indices, or tensor of boolean
indicators used to filter all the fields in the cameras given by self._FIELDS.
Returns:
an instance of the current cameras class with only the values at the selected index.
"""
kwargs = {}
tensor_types = {
# pyre-fixme[16]: Module `cuda` has no attribute `BoolTensor`.
"bool": (torch.BoolTensor, torch.cuda.BoolTensor),
# pyre-fixme[16]: Module `cuda` has no attribute `LongTensor`.
"long": (torch.LongTensor, torch.cuda.LongTensor),
}
if not isinstance(index, (int, list, *tensor_types["bool"], *tensor_types["long"])) or (
isinstance(index, list) and not all(isinstance(i, int) and not isinstance(i, bool) for i in index)
):
msg = "Invalid index type, expected int, List[int] or Bool/LongTensor; got %r"
raise ValueError(msg % type(index))
if isinstance(index, int):
index = [index]
if isinstance(index, tensor_types["bool"]):
# pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
# LongTensor]` has no attribute `ndim`.
# pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
# LongTensor]` has no attribute `shape`.
if index.ndim != 1 or index.shape[0] != len(self):
raise ValueError(
# pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
# LongTensor]` has no attribute `shape`.
f"Boolean index of shape {index.shape} does not match cameras"
)
elif max(index) >= len(self):
raise IndexError(f"Index {max(index)} is out of bounds for select cameras")
for field in self._FIELDS:
val = getattr(self, field, None)
if val is None:
continue
# e.g. "in_ndc" is set as attribute "_in_ndc" on the class
# but provided as "in_ndc" on initialization
if field.startswith("_"):
field = field[1:]
if isinstance(val, (str, bool)):
kwargs[field] = val
elif isinstance(val, torch.Tensor):
# In the init, all inputs will be converted to
# tensors before setting as attributes
kwargs[field] = val[index]
else:
raise ValueError(f"Field {field} type is not supported for indexing")
kwargs["device"] = self.device
return self.__class__(**kwargs)
############################################################
# Field of View Camera Classes #
############################################################
def OpenGLPerspectiveCameras(
znear: _BatchFloatType = 1.0,
zfar: _BatchFloatType = 100.0,
aspect_ratio: _BatchFloatType = 1.0,
fov: _BatchFloatType = 60.0,
degrees: bool = True,
R: torch.Tensor = _R,
T: torch.Tensor = _T,
device: Device = "cpu",
) -> "FoVPerspectiveCameras":
"""
OpenGLPerspectiveCameras has been DEPRECATED. Use FoVPerspectiveCameras instead.
Preserving OpenGLPerspectiveCameras for backward compatibility.
"""
warnings.warn(
"""OpenGLPerspectiveCameras is deprecated,
Use FoVPerspectiveCameras instead.
OpenGLPerspectiveCameras will be removed in future releases.""",
PendingDeprecationWarning,
)
return FoVPerspectiveCameras(
znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, degrees=degrees, R=R, T=T, device=device
)
class FoVPerspectiveCameras(CamerasBase):
"""
A class which stores a batch of parameters to generate a batch of
projection matrices by specifying the field of view.
The definitions of the parameters follow the OpenGL perspective camera.
The extrinsics of the camera (R and T matrices) can also be set in the
initializer or passed in to `get_full_projection_transform` to get
the full transformation from world -> ndc.
The `transform_points` method calculates the full world -> ndc transform
and then applies it to the input points.
The transforms can also be returned separately as Transform3d objects.
* Setting the Aspect Ratio for Non Square Images *
If the desired output image size is non square (i.e. a tuple of (H, W) where H != W)
the aspect ratio needs special consideration: There are two aspect ratios
to be aware of:
- the aspect ratio of each pixel
- the aspect ratio of the output image
The `aspect_ratio` setting in the FoVPerspectiveCameras sets the
pixel aspect ratio. When using this camera with the differentiable rasterizer
be aware that in the rasterizer we assume square pixels, but allow
variable image aspect ratio (i.e rectangle images).
In most cases you will want to set the camera `aspect_ratio=1.0`
(i.e. square pixels) and only vary the output image dimensions in pixels
for rasterization.
"""
# For __getitem__
_FIELDS = ("K", "znear", "zfar", "aspect_ratio", "fov", "R", "T", "degrees")
_SHARED_FIELDS = ("degrees",)
def __init__(
self,
znear: _BatchFloatType = 1.0,
zfar: _BatchFloatType = 100.0,
aspect_ratio: _BatchFloatType = 1.0,
fov: _BatchFloatType = 60.0,
degrees: bool = True,
R: torch.Tensor = _R,
T: torch.Tensor = _T,
K: Optional[torch.Tensor] = None,
device: Device = "cpu",
) -> None:
"""
Args:
znear: near clipping plane of the view frustrum.
zfar: far clipping plane of the view frustrum.
aspect_ratio: aspect ratio of the image pixels.
1.0 indicates square pixels.
fov: field of view angle of the camera.
degrees: bool, set to True if fov is specified in degrees.
R: Rotation matrix of shape (N, 3, 3)
T: Translation matrix of shape (N, 3)
K: (optional) A calibration matrix of shape (N, 4, 4)
If provided, don't need znear, zfar, fov, aspect_ratio, degrees
device: Device (as str or torch.device)
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
super().__init__(device=device, znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, R=R, T=T, K=K)
# No need to convert to tensor or broadcast.
self.degrees = degrees
def compute_projection_matrix(self, znear, zfar, fov, aspect_ratio, degrees: bool) -> torch.Tensor:
"""
Compute the calibration matrix K of shape (N, 4, 4)
Args:
znear: near clipping plane of the view frustrum.
zfar: far clipping plane of the view frustrum.
fov: field of view angle of the camera.
aspect_ratio: aspect ratio of the image pixels.
1.0 indicates square pixels.
degrees: bool, set to True if fov is specified in degrees.
Returns:
torch.FloatTensor of the calibration matrix with shape (N, 4, 4)
"""
K = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
if degrees:
fov = (np.pi / 180) * fov
if not torch.is_tensor(fov):
fov = torch.tensor(fov, device=self.device)
tanHalfFov = torch.tan((fov / 2))
max_y = tanHalfFov * znear
min_y = -max_y
max_x = max_y * aspect_ratio
min_x = -max_x
# NOTE: In OpenGL the projection matrix changes the handedness of the
# coordinate frame. i.e the NDC space positive z direction is the
# camera space negative z direction. This is because the sign of the z
# in the projection matrix is set to -1.0.
# In pytorch3d we maintain a right handed coordinate system throughout
# so the so the z sign is 1.0.
z_sign = 1.0
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
K[:, 0, 0] = 2.0 * znear / (max_x - min_x)
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
K[:, 1, 1] = 2.0 * znear / (max_y - min_y)
K[:, 0, 2] = (max_x + min_x) / (max_x - min_x)
K[:, 1, 2] = (max_y + min_y) / (max_y - min_y)
K[:, 3, 2] = z_sign * ones
# NOTE: This maps the z coordinate from [0, 1] where z = 0 if the point
# is at the near clipping plane and z = 1 when the point is at the far
# clipping plane.
K[:, 2, 2] = z_sign * zfar / (zfar - znear)
K[:, 2, 3] = -(zfar * znear) / (zfar - znear)
return K
def get_projection_transform(self, **kwargs) -> Transform3d:
"""
Calculate the perspective projection matrix with a symmetric
viewing frustrum. Use column major order.
The viewing frustrum will be projected into ndc, s.t.
(max_x, max_y) -> (+1, +1)
(min_x, min_y) -> (-1, -1)
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in `__init__`.
Return:
a Transform3d object which represents a batch of projection
matrices of shape (N, 4, 4)
.. code-block:: python
h1 = (max_y + min_y)/(max_y - min_y)
w1 = (max_x + min_x)/(max_x - min_x)
tanhalffov = tan((fov/2))
s1 = 1/tanhalffov
s2 = 1/(tanhalffov * (aspect_ratio))
# To map z to the range [0, 1] use:
f1 = far / (far - near)
f2 = -(far * near) / (far - near)
# Projection matrix
K = [
[s1, 0, w1, 0],
[0, s2, h1, 0],
[0, 0, f1, f2],
[0, 0, 1, 0],
]
"""
K = kwargs.get("K", self.K)
if K is not None:
if K.shape != (self._N, 4, 4):
msg = "Expected K to have shape of (%r, 4, 4)"
raise ValueError(msg % (self._N))
else:
K = self.compute_projection_matrix(
kwargs.get("znear", self.znear),
kwargs.get("zfar", self.zfar),
kwargs.get("fov", self.fov),
kwargs.get("aspect_ratio", self.aspect_ratio),
kwargs.get("degrees", self.degrees),
)
# Transpose the projection matrix as PyTorch3D transforms use row vectors.
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
return transform
def unproject_points(
self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
) -> torch.Tensor:
""">!
FoV cameras further allow for passing depth in world units
(`scaled_depth_input=False`) or in the [0, 1]-normalized units
(`scaled_depth_input=True`)
Args:
scaled_depth_input: If `True`, assumes the input depth is in
the [0, 1]-normalized units. If `False` the input depth is in
the world units.
"""
# obtain the relevant transformation to ndc
if world_coordinates:
to_ndc_transform = self.get_full_projection_transform()
else:
to_ndc_transform = self.get_projection_transform()
if scaled_depth_input:
# the input is scaled depth, so we don't have to do anything
xy_sdepth = xy_depth
else:
# parse out important values from the projection matrix
K_matrix = self.get_projection_transform(**kwargs.copy()).get_matrix()
# parse out f1, f2 from K_matrix
unsqueeze_shape = [1] * xy_depth.dim()
unsqueeze_shape[0] = K_matrix.shape[0]
f1 = K_matrix[:, 2, 2].reshape(unsqueeze_shape)
f2 = K_matrix[:, 3, 2].reshape(unsqueeze_shape)
# get the scaled depth
sdepth = (f1 * xy_depth[..., 2:3] + f2) / xy_depth[..., 2:3]
# concatenate xy + scaled depth
xy_sdepth = torch.cat((xy_depth[..., 0:2], sdepth), dim=-1)
# unproject with inverse of the projection
unprojection_transform = to_ndc_transform.inverse()
return unprojection_transform.transform_points(xy_sdepth)
def is_perspective(self):
return True
def in_ndc(self):
return True
def OpenGLOrthographicCameras(
znear: _BatchFloatType = 1.0,
zfar: _BatchFloatType = 100.0,
top: _BatchFloatType = 1.0,
bottom: _BatchFloatType = -1.0,
left: _BatchFloatType = -1.0,
right: _BatchFloatType = 1.0,
scale_xyz=((1.0, 1.0, 1.0),), # (1, 3)
R: torch.Tensor = _R,
T: torch.Tensor = _T,
device: Device = "cpu",
) -> "FoVOrthographicCameras":
"""
OpenGLOrthographicCameras has been DEPRECATED. Use FoVOrthographicCameras instead.
Preserving OpenGLOrthographicCameras for backward compatibility.
"""
warnings.warn(
"""OpenGLOrthographicCameras is deprecated,
Use FoVOrthographicCameras instead.
OpenGLOrthographicCameras will be removed in future releases.""",
PendingDeprecationWarning,
)
return FoVOrthographicCameras(
znear=znear,
zfar=zfar,
max_y=top,
min_y=bottom,
max_x=right,
min_x=left,
scale_xyz=scale_xyz,
R=R,
T=T,
device=device,
)
class FoVOrthographicCameras(CamerasBase):
"""
A class which stores a batch of parameters to generate a batch of
projection matrices by specifying the field of view.
The definitions of the parameters follow the OpenGL orthographic camera.
"""
# For __getitem__
_FIELDS = ("K", "znear", "zfar", "R", "T", "max_y", "min_y", "max_x", "min_x", "scale_xyz")
def __init__(
self,
znear: _BatchFloatType = 1.0,
zfar: _BatchFloatType = 100.0,
max_y: _BatchFloatType = 1.0,
min_y: _BatchFloatType = -1.0,
max_x: _BatchFloatType = 1.0,
min_x: _BatchFloatType = -1.0,
scale_xyz=((1.0, 1.0, 1.0),), # (1, 3)
R: torch.Tensor = _R,
T: torch.Tensor = _T,
K: Optional[torch.Tensor] = None,
device: Device = "cpu",
):
"""
Args:
znear: near clipping plane of the view frustrum.
zfar: far clipping plane of the view frustrum.
max_y: maximum y coordinate of the frustrum.
min_y: minimum y coordinate of the frustrum.
max_x: maximum x coordinate of the frustrum.
min_x: minimum x coordinate of the frustrum
scale_xyz: scale factors for each axis of shape (N, 3).
R: Rotation matrix of shape (N, 3, 3).
T: Translation of shape (N, 3).
K: (optional) A calibration matrix of shape (N, 4, 4)
If provided, don't need znear, zfar, max_y, min_y, max_x, min_x, scale_xyz
device: torch.device or string.
Only need to set min_x, max_x, min_y, max_y for viewing frustrums
which are non symmetric about the origin.
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
super().__init__(
device=device,
znear=znear,
zfar=zfar,
max_y=max_y,
min_y=min_y,
max_x=max_x,
min_x=min_x,
scale_xyz=scale_xyz,
R=R,
T=T,
K=K,
)
def compute_projection_matrix(self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz) -> torch.Tensor:
"""
Compute the calibration matrix K of shape (N, 4, 4)
Args:
znear: near clipping plane of the view frustrum.
zfar: far clipping plane of the view frustrum.
max_x: maximum x coordinate of the frustrum.
min_x: minimum x coordinate of the frustrum
max_y: maximum y coordinate of the frustrum.
min_y: minimum y coordinate of the frustrum.
scale_xyz: scale factors for each axis of shape (N, 3).
"""
K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device)
ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
# NOTE: OpenGL flips handedness of coordinate system between camera
# space and NDC space so z sign is -ve. In PyTorch3D we maintain a
# right handed coordinate system throughout.
z_sign = +1.0
K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0]
K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1]
K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x)
K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y)
K[:, 3, 3] = ones
# NOTE: This maps the z coordinate to the range [0, 1] and replaces the
# the OpenGL z normalization to [-1, 1]
K[:, 2, 2] = z_sign * (1.0 / (zfar - znear)) * scale_xyz[:, 2]
K[:, 2, 3] = -znear / (zfar - znear)
return K
def get_projection_transform(self, **kwargs) -> Transform3d:
"""
Calculate the orthographic projection matrix.
Use column major order.
Args:
**kwargs: parameters for the projection can be passed in to
override the default values set in __init__.
Return:
a Transform3d object which represents a batch of projection
matrices of shape (N, 4, 4)
.. code-block:: python
scale_x = 2 / (max_x - min_x)
scale_y = 2 / (max_y - min_y)
scale_z = 2 / (far-near)
mid_x = (max_x + min_x) / (max_x - min_x)
mix_y = (max_y + min_y) / (max_y - min_y)
mid_z = (far + near) / (far - near)
K = [
[scale_x, 0, 0, -mid_x],
[0, scale_y, 0, -mix_y],
[0, 0, -scale_z, -mid_z],
[0, 0, 0, 1],
]
"""
K = kwargs.get("K", self.K)
if K is not None:
if K.shape != (self._N, 4, 4):
msg = "Expected K to have shape of (%r, 4, 4)"
raise ValueError(msg % (self._N))
else:
K = self.compute_projection_matrix(
kwargs.get("znear", self.znear),
kwargs.get("zfar", self.zfar),
kwargs.get("max_x", self.max_x),
kwargs.get("min_x", self.min_x),
kwargs.get("max_y", self.max_y),
kwargs.get("min_y", self.min_y),
kwargs.get("scale_xyz", self.scale_xyz),
)
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
return transform
def unproject_points(
self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
) -> torch.Tensor:
""">!
FoV cameras further allow for passing depth in world units
(`scaled_depth_input=False`) or in the [0, 1]-normalized units
(`scaled_depth_input=True`)
Args:
scaled_depth_input: If `True`, assumes the input depth is in
the [0, 1]-normalized units. If `False` the input depth is in
the world units.
"""
if world_coordinates:
to_ndc_transform = self.get_full_projection_transform(**kwargs.copy())
else:
to_ndc_transform = self.get_projection_transform(**kwargs.copy())
if scaled_depth_input:
# the input depth is already scaled
xy_sdepth = xy_depth
else:
# we have to obtain the scaled depth first
K = self.get_projection_transform(**kwargs).get_matrix()
unsqueeze_shape = [1] * K.dim()
unsqueeze_shape[0] = K.shape[0]
mid_z = K[:, 3, 2].reshape(unsqueeze_shape)
scale_z = K[:, 2, 2].reshape(unsqueeze_shape)
scaled_depth = scale_z * xy_depth[..., 2:3] + mid_z
# cat xy and scaled depth
xy_sdepth = torch.cat((xy_depth[..., :2], scaled_depth), dim=-1)
# finally invert the transform
unprojection_transform = to_ndc_transform.inverse()
return unprojection_transform.transform_points(xy_sdepth)
def is_perspective(self):
return False
def in_ndc(self):
return True
############################################################
# MultiView Camera Classes #
############################################################
"""
Note that the MultiView Cameras accept parameters in NDC space.
"""
def SfMPerspectiveCameras(
focal_length: _FocalLengthType = 1.0,
principal_point=((0.0, 0.0),),
R: torch.Tensor = _R,
T: torch.Tensor = _T,
device: Device = "cpu",
) -> "PerspectiveCameras":
"""
SfMPerspectiveCameras has been DEPRECATED. Use PerspectiveCameras instead.
Preserving SfMPerspectiveCameras for backward compatibility.
"""
warnings.warn(
"""SfMPerspectiveCameras is deprecated,
Use PerspectiveCameras instead.
SfMPerspectiveCameras will be removed in future releases.""",
PendingDeprecationWarning,
)
return PerspectiveCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)
class PerspectiveCameras(CamerasBase):
"""
A class which stores a batch of parameters to generate a batch of
transformation matrices using the multi-view geometry convention for
perspective camera.
Parameters for this camera are specified in NDC if `in_ndc` is set to True.
If parameters are specified in screen space, `in_ndc` must be set to False.
"""
# For __getitem__
_FIELDS = (
"K",
"R",
"T",
"focal_length",
"principal_point",
"_in_ndc", # arg is in_ndc but attribute set as _in_ndc
"image_size",
)
_SHARED_FIELDS = ("_in_ndc",)
def __init__(
self,
focal_length: _FocalLengthType = 1.0,
principal_point=((0.0, 0.0),),
R: torch.Tensor = _R,
T: torch.Tensor = _T,
K: Optional[torch.Tensor] = None,
device: Device = "cpu",
in_ndc: bool = True,
image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
) -> None:
"""
Args:
focal_length: Focal length of the camera in world units.
A tensor of shape (N, 1) or (N, 2) for
square and non-square pixels respectively.
principal_point: xy coordinates of the center of
the principal point of the camera in pixels.
A tensor of shape (N, 2).
in_ndc: True if camera parameters are specified in NDC.
If camera parameters are in screen space, it must
be set to False.
R: Rotation matrix of shape (N, 3, 3)
T: Translation matrix of shape (N, 3)
K: (optional) A calibration matrix of shape (N, 4, 4)
If provided, don't need focal_length, principal_point
image_size: (height, width) of image size.
A tensor of shape (N, 2) or a list/tuple. Required for screen cameras.
device: torch.device or string
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
kwargs = {"image_size": image_size} if image_size is not None else {}
super().__init__(
device=device,
focal_length=focal_length,
principal_point=principal_point,
R=R,
T=T,
K=K,
_in_ndc=in_ndc,
**kwargs, # pyre-ignore
)
if image_size is not None:
if (self.image_size < 1).any(): # pyre-ignore
raise ValueError("Image_size provided has invalid values")
else:
self.image_size = None
# When focal length is provided as one value, expand to
# create (N, 2) shape tensor
if self.focal_length.ndim == 1: # (N,)
self.focal_length = self.focal_length[:, None] # (N, 1)
self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
def get_projection_transform(self, **kwargs) -> Transform3d:
"""
Calculate the projection matrix using the
multi-view geometry convention.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in __init__.
Returns:
A `Transform3d` object with a batch of `N` projection transforms.
.. code-block:: python
fx = focal_length[:, 0]
fy = focal_length[:, 1]
px = principal_point[:, 0]
py = principal_point[:, 1]
K = [
[fx, 0, px, 0],
[0, fy, py, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
]
"""
K = kwargs.get("K", self.K)
if K is not None:
if K.shape != (self._N, 4, 4):
msg = "Expected K to have shape of (%r, 4, 4)"
raise ValueError(msg % (self._N))
else:
K = _get_sfm_calibration_matrix(
self._N,
self.device,
kwargs.get("focal_length", self.focal_length),
kwargs.get("principal_point", self.principal_point),
orthographic=False,
)
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
return transform
def unproject_points(
self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
) -> torch.Tensor:
"""
Args:
from_ndc: If `False` (default), assumes xy part of input is in
NDC space if self.in_ndc(), otherwise in screen space. If
`True`, assumes xy is in NDC space even if the camera
is defined in screen space.
"""
if world_coordinates:
to_camera_transform = self.get_full_projection_transform(**kwargs)
else:
to_camera_transform = self.get_projection_transform(**kwargs)
if from_ndc:
to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())
unprojection_transform = to_camera_transform.inverse()
xy_inv_depth = torch.cat((xy_depth[..., :2], 1.0 / xy_depth[..., 2:3]), dim=-1) # type: ignore
return unprojection_transform.transform_points(xy_inv_depth)
def get_principal_point(self, **kwargs) -> torch.Tensor:
"""
Return the camera's principal point
Args:
**kwargs: parameters for the camera extrinsics can be passed in
as keyword arguments to override the default values
set in __init__.
"""
proj_mat = self.get_projection_transform(**kwargs).get_matrix()
return proj_mat[:, 2, :2]
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
"""
Returns the transform from camera projection space (screen or NDC) to NDC space.
If the camera is defined already in NDC space, the transform is identity.
For cameras defined in screen space, we adjust the principal point computation
which is defined in the image space (commonly) and scale the points to NDC space.
This transform leaves the depth unchanged.
Important: This transforms assumes PyTorch3D conventions for the input points,
i.e. +X left, +Y up.
"""
if self.in_ndc():
ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
else:
# when cameras are defined in screen/image space, the principal point is
# provided in the (+X right, +Y down), aka image, coordinate system.
# Since input points are defined in the PyTorch3D system (+X left, +Y up),
# we need to adjust for the principal point transform.
pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
pr_point_fix[:, 0, 0] = 1.0
pr_point_fix[:, 1, 1] = 1.0
pr_point_fix[:, 2, 2] = 1.0
pr_point_fix[:, 3, 3] = 1.0
pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
image_size = kwargs.get("image_size", self.get_image_size())
screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)
return ndc_transform
def is_perspective(self):
return True
def in_ndc(self):
return self._in_ndc
def SfMOrthographicCameras(
focal_length: _FocalLengthType = 1.0,
principal_point=((0.0, 0.0),),
R: torch.Tensor = _R,
T: torch.Tensor = _T,
device: Device = "cpu",
) -> "OrthographicCameras":
"""
SfMOrthographicCameras has been DEPRECATED. Use OrthographicCameras instead.
Preserving SfMOrthographicCameras for backward compatibility.
"""
warnings.warn(
"""SfMOrthographicCameras is deprecated,
Use OrthographicCameras instead.
SfMOrthographicCameras will be removed in future releases.""",
PendingDeprecationWarning,
)
return OrthographicCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)
class OrthographicCameras(CamerasBase):
"""
A class which stores a batch of parameters to generate a batch of
transformation matrices using the multi-view geometry convention for
orthographic camera.
Parameters for this camera are specified in NDC if `in_ndc` is set to True.
If parameters are specified in screen space, `in_ndc` must be set to False.
"""
# For __getitem__
_FIELDS = ("K", "R", "T", "focal_length", "principal_point", "_in_ndc", "image_size")
_SHARED_FIELDS = ("_in_ndc",)
def __init__(
self,
focal_length: _FocalLengthType = 1.0,
principal_point=((0.0, 0.0),),
R: torch.Tensor = _R,
T: torch.Tensor = _T,
K: Optional[torch.Tensor] = None,
device: Device = "cpu",
in_ndc: bool = True,
image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
) -> None:
"""
Args:
focal_length: Focal length of the camera in world units.
A tensor of shape (N, 1) or (N, 2) for
square and non-square pixels respectively.
principal_point: xy coordinates of the center of
the principal point of the camera in pixels.
A tensor of shape (N, 2).
in_ndc: True if camera parameters are specified in NDC.
If False, then camera parameters are in screen space.
R: Rotation matrix of shape (N, 3, 3)
T: Translation matrix of shape (N, 3)
K: (optional) A calibration matrix of shape (N, 4, 4)
If provided, don't need focal_length, principal_point, image_size
image_size: (height, width) of image size.
A tensor of shape (N, 2) or list/tuple. Required for screen cameras.
device: torch.device or string
"""
# The initializer formats all inputs to torch tensors and broadcasts
# all the inputs to have the same batch dimension where necessary.
kwargs = {"image_size": image_size} if image_size is not None else {}
super().__init__(
device=device,
focal_length=focal_length,
principal_point=principal_point,
R=R,
T=T,
K=K,
_in_ndc=in_ndc,
**kwargs, # pyre-ignore
)
if image_size is not None:
if (self.image_size < 1).any(): # pyre-ignore
raise ValueError("Image_size provided has invalid values")
else:
self.image_size = None
# When focal length is provided as one value, expand to
# create (N, 2) shape tensor
if self.focal_length.ndim == 1: # (N,)
self.focal_length = self.focal_length[:, None] # (N, 1)
self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
def get_projection_transform(self, **kwargs) -> Transform3d:
"""
Calculate the projection matrix using
the multi-view geometry convention.
Args:
**kwargs: parameters for the projection can be passed in as keyword
arguments to override the default values set in __init__.
Returns:
A `Transform3d` object with a batch of `N` projection transforms.
.. code-block:: python
fx = focal_length[:,0]
fy = focal_length[:,1]
px = principal_point[:,0]
py = principal_point[:,1]
K = [
[fx, 0, 0, px],
[0, fy, 0, py],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
"""
K = kwargs.get("K", self.K)
if K is not None:
if K.shape != (self._N, 4, 4):
msg = "Expected K to have shape of (%r, 4, 4)"
raise ValueError(msg % (self._N))
else:
K = _get_sfm_calibration_matrix(
self._N,
self.device,
kwargs.get("focal_length", self.focal_length),
kwargs.get("principal_point", self.principal_point),
orthographic=True,
)
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
return transform
def unproject_points(
self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
) -> torch.Tensor:
"""
Args:
from_ndc: If `False` (default), assumes xy part of input is in
NDC space if self.in_ndc(), otherwise in screen space. If
`True`, assumes xy is in NDC space even if the camera
is defined in screen space.
"""
if world_coordinates:
to_camera_transform = self.get_full_projection_transform(**kwargs)
else:
to_camera_transform = self.get_projection_transform(**kwargs)
if from_ndc:
to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())
unprojection_transform = to_camera_transform.inverse()
return unprojection_transform.transform_points(xy_depth)
def get_principal_point(self, **kwargs) -> torch.Tensor:
"""
Return the camera's principal point
Args:
**kwargs: parameters for the camera extrinsics can be passed in
as keyword arguments to override the default values
set in __init__.
"""
proj_mat = self.get_projection_transform(**kwargs).get_matrix()
return proj_mat[:, 3, :2]
def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
"""
Returns the transform from camera projection space (screen or NDC) to NDC space.
If the camera is defined already in NDC space, the transform is identity.
For cameras defined in screen space, we adjust the principal point computation
which is defined in the image space (commonly) and scale the points to NDC space.
Important: This transforms assumes PyTorch3D conventions for the input points,
i.e. +X left, +Y up.
"""
if self.in_ndc():
ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
else:
# when cameras are defined in screen/image space, the principal point is
# provided in the (+X right, +Y down), aka image, coordinate system.
# Since input points are defined in the PyTorch3D system (+X left, +Y up),
# we need to adjust for the principal point transform.
pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
pr_point_fix[:, 0, 0] = 1.0
pr_point_fix[:, 1, 1] = 1.0
pr_point_fix[:, 2, 2] = 1.0
pr_point_fix[:, 3, 3] = 1.0
pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
image_size = kwargs.get("image_size", self.get_image_size())
screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)
return ndc_transform
def is_perspective(self):
return False
def in_ndc(self):
return self._in_ndc
################################################
# Helper functions for cameras #
################################################
def _get_sfm_calibration_matrix(
N: int, device: Device, focal_length, principal_point, orthographic: bool = False
) -> torch.Tensor:
"""
Returns a calibration matrix of a perspective/orthographic camera.
Args:
N: Number of cameras.
focal_length: Focal length of the camera.
principal_point: xy coordinates of the center of
the principal point of the camera in pixels.
orthographic: Boolean specifying if the camera is orthographic or not
The calibration matrix `K` is set up as follows:
.. code-block:: python
fx = focal_length[:,0]
fy = focal_length[:,1]
px = principal_point[:,0]
py = principal_point[:,1]
for orthographic==True:
K = [
[fx, 0, 0, px],
[0, fy, 0, py],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
else:
K = [
[fx, 0, px, 0],
[0, fy, py, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
]
Returns:
A calibration matrix `K` of the SfM-conventioned camera
of shape (N, 4, 4).
"""
if not torch.is_tensor(focal_length):
focal_length = torch.tensor(focal_length, device=device)
if focal_length.ndim in (0, 1) or focal_length.shape[1] == 1:
fx = fy = focal_length
else:
fx, fy = focal_length.unbind(1)
if not torch.is_tensor(principal_point):
principal_point = torch.tensor(principal_point, device=device)
px, py = principal_point.unbind(1)
K = fx.new_zeros(N, 4, 4)
K[:, 0, 0] = fx
K[:, 1, 1] = fy
if orthographic:
K[:, 0, 3] = px
K[:, 1, 3] = py
K[:, 2, 2] = 1.0
K[:, 3, 3] = 1.0
else:
K[:, 0, 2] = px
K[:, 1, 2] = py
K[:, 3, 2] = 1.0
K[:, 2, 3] = 1.0
return K
################################################
# Helper functions for world to view transforms
################################################
def get_world_to_view_transform(R: torch.Tensor = _R, T: torch.Tensor = _T) -> Transform3d:
"""
This function returns a Transform3d representing the transformation
matrix to go from world space to view space by applying a rotation and
a translation.
PyTorch3D uses the same convention as Hartley & Zisserman.
I.e., for camera extrinsic parameters R (rotation) and T (translation),
we map a 3D point `X_world` in world coordinates to
a point `X_cam` in camera coordinates with:
`X_cam = X_world R + T`
Args:
R: (N, 3, 3) matrix representing the rotation.
T: (N, 3) matrix representing the translation.
Returns:
a Transform3d object which represents the composed RT transformation.
"""
# TODO: also support the case where RT is specified as one matrix
# of shape (N, 4, 4).
if T.shape[0] != R.shape[0]:
msg = "Expected R, T to have the same batch dimension; got %r, %r"
raise ValueError(msg % (R.shape[0], T.shape[0]))
if T.dim() != 2 or T.shape[1:] != (3,):
msg = "Expected T to have shape (N, 3); got %r"
raise ValueError(msg % repr(T.shape))
if R.dim() != 3 or R.shape[1:] != (3, 3):
msg = "Expected R to have shape (N, 3, 3); got %r"
raise ValueError(msg % repr(R.shape))
# Create a Transform3d object
T_ = Translate(T, device=T.device)
R_ = Rotate(R, device=R.device)
return R_.compose(T_)
def camera_position_from_spherical_angles(
distance: float, elevation: float, azimuth: float, degrees: bool = True, device: Device = "cpu"
) -> torch.Tensor:
"""
Calculate the location of the camera based on the distance away from
the target point, the elevation and azimuth angles.
Args:
distance: distance of the camera from the object.
elevation, azimuth: angles.
The inputs distance, elevation and azimuth can be one of the following
- Python scalar
- Torch scalar
- Torch tensor of shape (N) or (1)
degrees: bool, whether the angles are specified in degrees or radians.
device: str or torch.device, device for new tensors to be placed on.
The vectors are broadcast against each other so they all have shape (N, 1).
Returns:
camera_position: (N, 3) xyz location of the camera.
"""
broadcasted_args = convert_to_tensors_and_broadcast(distance, elevation, azimuth, device=device)
dist, elev, azim = broadcasted_args
if degrees:
elev = math.pi / 180.0 * elev
azim = math.pi / 180.0 * azim
x = dist * torch.cos(elev) * torch.sin(azim)
y = dist * torch.sin(elev)
z = dist * torch.cos(elev) * torch.cos(azim)
camera_position = torch.stack([x, y, z], dim=1)
if camera_position.dim() == 0:
camera_position = camera_position.view(1, -1) # add batch dim.
return camera_position.view(-1, 3)
def look_at_rotation(camera_position, at=((0, 0, 0),), up=((0, 1, 0),), device: Device = "cpu") -> torch.Tensor:
"""
This function takes a vector 'camera_position' which specifies the location
of the camera in world coordinates and two vectors `at` and `up` which
indicate the position of the object and the up directions of the world
coordinate system respectively. The object is assumed to be centered at
the origin.
The output is a rotation matrix representing the transformation
from world coordinates -> view coordinates.
Args:
camera_position: position of the camera in world coordinates
at: position of the object in world coordinates
up: vector specifying the up direction in the world coordinate frame.
The inputs camera_position, at and up can each be a
- 3 element tuple/list
- torch tensor of shape (1, 3)
- torch tensor of shape (N, 3)
The vectors are broadcast against each other so they all have shape (N, 3).
Returns:
R: (N, 3, 3) batched rotation matrices
"""
# Format input and broadcast
broadcasted_args = convert_to_tensors_and_broadcast(camera_position, at, up, device=device)
camera_position, at, up = broadcasted_args
for t, n in zip([camera_position, at, up], ["camera_position", "at", "up"]):
if t.shape[-1] != 3:
msg = "Expected arg %s to have shape (N, 3); got %r"
raise ValueError(msg % (n, t.shape))
z_axis = F.normalize(at - camera_position, eps=1e-5)
x_axis = F.normalize(torch.cross(up, z_axis, dim=1), eps=1e-5)
y_axis = F.normalize(torch.cross(z_axis, x_axis, dim=1), eps=1e-5)
is_close = torch.isclose(x_axis, torch.tensor(0.0), atol=5e-3).all(dim=1, keepdim=True)
if is_close.any():
replacement = F.normalize(torch.cross(y_axis, z_axis, dim=1), eps=1e-5)
x_axis = torch.where(is_close, replacement, x_axis)
R = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1)
return R.transpose(1, 2)
def look_at_view_transform(
dist: _BatchFloatType = 1.0,
elev: _BatchFloatType = 0.0,
azim: _BatchFloatType = 0.0,
degrees: bool = True,
eye: Optional[Union[Sequence, torch.Tensor]] = None,
at=((0, 0, 0),), # (1, 3)
up=((0, 1, 0),), # (1, 3)
device: Device = "cpu",
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
This function returns a rotation and translation matrix
to apply the 'Look At' transformation from world -> view coordinates [0].
Args:
dist: distance of the camera from the object
elev: angle in degrees or radians. This is the angle between the
vector from the object to the camera, and the horizontal plane y = 0 (xz-plane).
azim: angle in degrees or radians. The vector from the object to
the camera is projected onto a horizontal plane y = 0.
azim is the angle between the projected vector and a
reference vector at (0, 0, 1) on the reference plane (the horizontal plane).
dist, elev and azim can be of shape (1), (N).
degrees: boolean flag to indicate if the elevation and azimuth
angles are specified in degrees or radians.
eye: the position of the camera(s) in world coordinates. If eye is not
None, it will override the camera position derived from dist, elev, azim.
up: the direction of the x axis in the world coordinate system.
at: the position of the object(s) in world coordinates.
eye, up and at can be of shape (1, 3) or (N, 3).
Returns:
2-element tuple containing
- **R**: the rotation to apply to the points to align with the camera.
- **T**: the translation to apply to the points to align with the camera.
References:
[0] https://www.scratchapixel.com
"""
if eye is not None:
broadcasted_args = convert_to_tensors_and_broadcast(eye, at, up, device=device)
eye, at, up = broadcasted_args
C = eye
else:
broadcasted_args = convert_to_tensors_and_broadcast(dist, elev, azim, at, up, device=device)
dist, elev, azim, at, up = broadcasted_args
C = camera_position_from_spherical_angles(dist, elev, azim, degrees=degrees, device=device) + at
R = look_at_rotation(C, at, up, device=device)
T = -torch.bmm(R.transpose(1, 2), C[:, :, None])[:, :, 0]
return R, T
def get_ndc_to_screen_transform(
cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
) -> Transform3d:
"""
PyTorch3D NDC to screen conversion.
Conversion from PyTorch3D's NDC space (+X left, +Y up) to screen/image space
(+X right, +Y down, origin top left).
Args:
cameras
with_xyflip: flips x- and y-axis if set to True.
Optional kwargs:
image_size: ((height, width),) specifying the height, width
of the image. If not provided, it reads it from cameras.
We represent the NDC to screen conversion as a Transform3d
with projection matrix
K = [
[s, 0, 0, cx],
[0, s, 0, cy],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
"""
# We require the image size, which is necessary for the transform
if image_size is None:
msg = "For NDC to screen conversion, image_size=(height, width) needs to be specified."
raise ValueError(msg)
K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32)
if not torch.is_tensor(image_size):
image_size = torch.tensor(image_size, device=cameras.device)
# pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any,
# ...]]` has no attribute `view`.
image_size = image_size.view(-1, 2) # of shape (1 or B)x2
height, width = image_size.unbind(1)
# For non square images, we scale the points such that smallest side
# has range [-1, 1] and the largest side has range [-u, u], with u > 1.
# This convention is consistent with the PyTorch3D renderer
scale = (image_size.min(dim=1).values - 0.0) / 2.0
K[:, 0, 0] = scale
K[:, 1, 1] = scale
K[:, 0, 3] = -1.0 * (width - 0.0) / 2.0
K[:, 1, 3] = -1.0 * (height - 0.0) / 2.0
K[:, 2, 2] = 1.0
K[:, 3, 3] = 1.0
# Transpose the projection matrix as PyTorch3D transforms use row vectors.
transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=cameras.device)
if with_xyflip:
# flip x, y axis
xyflip = torch.eye(4, device=cameras.device, dtype=torch.float32)
xyflip[0, 0] = -1.0
xyflip[1, 1] = -1.0
xyflip = xyflip.view(1, 4, 4).expand(cameras._N, -1, -1)
xyflip_transform = Transform3d(matrix=xyflip.transpose(1, 2).contiguous(), device=cameras.device)
transform = transform.compose(xyflip_transform)
return transform
def get_screen_to_ndc_transform(
cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
) -> Transform3d:
"""
Screen to PyTorch3D NDC conversion.
Conversion from screen/image space (+X right, +Y down, origin top left)
to PyTorch3D's NDC space (+X left, +Y up).
Args:
cameras
with_xyflip: flips x- and y-axis if set to True.
Optional kwargs:
image_size: ((height, width),) specifying the height, width
of the image. If not provided, it reads it from cameras.
We represent the screen to NDC conversion as a Transform3d
with projection matrix
K = [
[1/s, 0, 0, cx/s],
[ 0, 1/s, 0, cy/s],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1],
]
"""
transform = get_ndc_to_screen_transform(cameras, with_xyflip=with_xyflip, image_size=image_size).inverse()
return transform
def try_get_projection_transform(cameras: CamerasBase, cameras_kwargs: Dict[str, Any]) -> Optional[Transform3d]:
"""
Try block to get projection transform from cameras and cameras_kwargs.
Args:
cameras: cameras instance, can be linear cameras or nonliear cameras
cameras_kwargs: camera parameters to be passed to cameras
Returns:
If the camera implemented projection_transform, return the
projection transform; Otherwise, return None
"""
transform = None
try:
transform = cameras.get_projection_transform(**cameras_kwargs)
except NotImplementedError:
pass
return transform
|