File size: 69,437 Bytes
8866a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

import math
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F

# from pytorch3d.common.datatypes import Device

from .device_utils import Device, get_device, make_device
from .transform3d import Rotate, Transform3d, Translate
from .renderer_utils import convert_to_tensors_and_broadcast, TensorProperties


# Default values for rotation and translation matrices.
_R = torch.eye(3)[None]  # (1, 3, 3)
_T = torch.zeros(1, 3)  # (1, 3)

# An input which is a float per batch element
_BatchFloatType = Union[float, Sequence[float], torch.Tensor]

# one or two floats per batch element
_FocalLengthType = Union[float, Sequence[Tuple[float]], Sequence[Tuple[float, float]], torch.Tensor]


class CamerasBase(TensorProperties):
    """
    `CamerasBase` implements a base class for all cameras.

    For cameras, there are four different coordinate systems (or spaces)
    - World coordinate system: This is the system the object lives - the world.
    - Camera view coordinate system: This is the system that has its origin on
        the camera and the Z-axis perpendicular to the image plane.
        In PyTorch3D, we assume that +X points left, and +Y points up and
        +Z points out from the image plane.
        The transformation from world --> view happens after applying a rotation (R)
        and translation (T)
    - NDC coordinate system: This is the normalized coordinate system that confines
        points in a volume the rendered part of the object or scene, also known as
        view volume. For square images, given the PyTorch3D convention, (+1, +1, znear)
        is the top left near corner, and (-1, -1, zfar) is the bottom right far
        corner of the volume.
        The transformation from view --> NDC happens after applying the camera
        projection matrix (P) if defined in NDC space.
        For non square images, we scale the points such that smallest side
        has range [-1, 1] and the largest side has range [-u, u], with u > 1.
    - Screen coordinate system: This is another representation of the view volume with
        the XY coordinates defined in image space instead of a normalized space.

    An illustration of the coordinate systems can be found in pytorch3d/docs/notes/cameras.md.

    CameraBase defines methods that are common to all camera models:
        - `get_camera_center` that returns the optical center of the camera in
            world coordinates
        - `get_world_to_view_transform` which returns a 3D transform from
            world coordinates to the camera view coordinates (R, T)
        - `get_full_projection_transform` which composes the projection
            transform (P) with the world-to-view transform (R, T)
        - `transform_points` which takes a set of input points in world coordinates and
            projects to the space the camera is defined in (NDC or screen)
        - `get_ndc_camera_transform` which defines the transform from screen/NDC to
            PyTorch3D's NDC space
        - `transform_points_ndc` which takes a set of points in world coordinates and
            projects them to PyTorch3D's NDC space
        - `transform_points_screen` which takes a set of points in world coordinates and
            projects them to screen space

    For each new camera, one should implement the `get_projection_transform`
    routine that returns the mapping from camera view coordinates to camera
    coordinates (NDC or screen).

    Another useful function that is specific to each camera model is
    `unproject_points` which sends points from camera coordinates (NDC or screen)
    back to camera view or world coordinates depending on the `world_coordinates`
    boolean argument of the function.
    """

    # Used in __getitem__ to index the relevant fields
    # When creating a new camera, this should be set in the __init__
    _FIELDS: Tuple[str, ...] = ()

    # Names of fields which are a constant property of the whole batch, rather
    # than themselves a batch of data.
    # When joining objects into a batch, they will have to agree.
    _SHARED_FIELDS: Tuple[str, ...] = ()

    def get_projection_transform(self, **kwargs):
        """
        Calculate the projective transformation matrix.

        Args:
            **kwargs: parameters for the projection can be passed in as keyword
                arguments to override the default values set in `__init__`.

        Return:
            a `Transform3d` object which represents a batch of projection
            matrices of shape (N, 3, 3)
        """
        raise NotImplementedError()

    def unproject_points(self, xy_depth: torch.Tensor, **kwargs):
        """
        Transform input points from camera coordinates (NDC or screen)
        to the world / camera coordinates.

        Each of the input points `xy_depth` of shape (..., 3) is
        a concatenation of the x, y location and its depth.

        For instance, for an input 2D tensor of shape `(num_points, 3)`
        `xy_depth` takes the following form:
            `xy_depth[i] = [x[i], y[i], depth[i]]`,
        for a each point at an index `i`.

        The following example demonstrates the relationship between
        `transform_points` and `unproject_points`:

        .. code-block:: python

            cameras = # camera object derived from CamerasBase
            xyz = # 3D points of shape (batch_size, num_points, 3)
            # transform xyz to the camera view coordinates
            xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
            # extract the depth of each point as the 3rd coord of xyz_cam
            depth = xyz_cam[:, :, 2:]
            # project the points xyz to the camera
            xy = cameras.transform_points(xyz)[:, :, :2]
            # append depth to xy
            xy_depth = torch.cat((xy, depth), dim=2)
            # unproject to the world coordinates
            xyz_unproj_world = cameras.unproject_points(xy_depth, world_coordinates=True)
            print(torch.allclose(xyz, xyz_unproj_world)) # True
            # unproject to the camera coordinates
            xyz_unproj = cameras.unproject_points(xy_depth, world_coordinates=False)
            print(torch.allclose(xyz_cam, xyz_unproj)) # True

        Args:
            xy_depth: torch tensor of shape (..., 3).
            world_coordinates: If `True`, unprojects the points back to world
                coordinates using the camera extrinsics `R` and `T`.
                `False` ignores `R` and `T` and unprojects to
                the camera view coordinates.
            from_ndc: If `False` (default), assumes xy part of input is in
                NDC space if self.in_ndc(), otherwise in screen space. If
                `True`, assumes xy is in NDC space even if the camera
                is defined in screen space.

        Returns
            new_points: unprojected points with the same shape as `xy_depth`.
        """
        raise NotImplementedError()

    def get_camera_center(self, **kwargs) -> torch.Tensor:
        """
        Return the 3D location of the camera optical center
        in the world coordinates.

        Args:
            **kwargs: parameters for the camera extrinsics can be passed in
                as keyword arguments to override the default values
                set in __init__.

        Setting R or T here will update the values set in init as these
        values may be needed later on in the rendering pipeline e.g. for
        lighting calculations.

        Returns:
            C: a batch of 3D locations of shape (N, 3) denoting
            the locations of the center of each camera in the batch.
        """
        w2v_trans = self.get_world_to_view_transform(**kwargs)
        P = w2v_trans.inverse().get_matrix()
        # the camera center is the translation component (the first 3 elements
        # of the last row) of the inverted world-to-view
        # transform (4x4 RT matrix)
        C = P[:, 3, :3]
        return C

    def get_world_to_view_transform(self, **kwargs) -> Transform3d:
        """
        Return the world-to-view transform.

        Args:
            **kwargs: parameters for the camera extrinsics can be passed in
                as keyword arguments to override the default values
                set in __init__.

        Setting R and T here will update the values set in init as these
        values may be needed later on in the rendering pipeline e.g. for
        lighting calculations.

        Returns:
            A Transform3d object which represents a batch of transforms
            of shape (N, 3, 3)
        """
        R: torch.Tensor = kwargs.get("R", self.R)
        T: torch.Tensor = kwargs.get("T", self.T)
        self.R = R
        self.T = T
        world_to_view_transform = get_world_to_view_transform(R=R, T=T)
        return world_to_view_transform

    def get_full_projection_transform(self, **kwargs) -> Transform3d:
        """
        Return the full world-to-camera transform composing the
        world-to-view and view-to-camera transforms.
        If camera is defined in NDC space, the projected points are in NDC space.
        If camera is defined in screen space, the projected points are in screen space.

        Args:
            **kwargs: parameters for the projection transforms can be passed in
                as keyword arguments to override the default values
                set in __init__.

        Setting R and T here will update the values set in init as these
        values may be needed later on in the rendering pipeline e.g. for
        lighting calculations.

        Returns:
            a Transform3d object which represents a batch of transforms
            of shape (N, 3, 3)
        """
        self.R: torch.Tensor = kwargs.get("R", self.R)
        self.T: torch.Tensor = kwargs.get("T", self.T)
        world_to_view_transform = self.get_world_to_view_transform(R=self.R, T=self.T)
        view_to_proj_transform = self.get_projection_transform(**kwargs)
        return world_to_view_transform.compose(view_to_proj_transform)

    def transform_points(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
        """
        Transform input points from world to camera space.
        If camera is defined in NDC space, the projected points are in NDC space.
        If camera is defined in screen space, the projected points are in screen space.

        For `CamerasBase.transform_points`, setting `eps > 0`
        stabilizes gradients since it leads to avoiding division
        by excessively low numbers for points close to the camera plane.

        Args:
            points: torch tensor of shape (..., 3).
            eps: If eps!=None, the argument is used to clamp the
                divisor in the homogeneous normalization of the points
                transformed to the ndc space. Please see
                `transforms.Transform3d.transform_points` for details.

                For `CamerasBase.transform_points`, setting `eps > 0`
                stabilizes gradients since it leads to avoiding division
                by excessively low numbers for points close to the
                camera plane.

        Returns
            new_points: transformed points with the same shape as the input.
        """
        world_to_proj_transform = self.get_full_projection_transform(**kwargs)
        return world_to_proj_transform.transform_points(points, eps=eps)

    def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
        """
        Returns the transform from camera projection space (screen or NDC) to NDC space.
        For cameras that can be specified in screen space, this transform
        allows points to be converted from screen to NDC space.
        The default transform scales the points from [0, W]x[0, H]
        to [-1, 1]x[-u, u] or [-u, u]x[-1, 1] where u > 1 is the aspect ratio of the image.
        This function should be modified per camera definitions if need be,
        e.g. for Perspective/Orthographic cameras we provide a custom implementation.
        This transform assumes PyTorch3D coordinate system conventions for
        both the NDC space and the input points.

        This transform interfaces with the PyTorch3D renderer which assumes
        input points to the renderer to be in NDC space.
        """
        if self.in_ndc():
            return Transform3d(device=self.device, dtype=torch.float32)
        else:
            # For custom cameras which can be defined in screen space,
            # users might might have to implement the screen to NDC transform based
            # on the definition of the camera parameters.
            # See PerspectiveCameras/OrthographicCameras for an example.
            # We don't flip xy because we assume that world points are in
            # PyTorch3D coordinates, and thus conversion from screen to ndc
            # is a mere scaling from image to [-1, 1] scale.
            image_size = kwargs.get("image_size", self.get_image_size())
            return get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)

    def transform_points_ndc(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
        """
        Transforms points from PyTorch3D world/camera space to NDC space.
        Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
        Output points are in NDC space: +X left, +Y up, origin at image center.

        Args:
            points: torch tensor of shape (..., 3).
            eps: If eps!=None, the argument is used to clamp the
                divisor in the homogeneous normalization of the points
                transformed to the ndc space. Please see
                `transforms.Transform3d.transform_points` for details.

                For `CamerasBase.transform_points`, setting `eps > 0`
                stabilizes gradients since it leads to avoiding division
                by excessively low numbers for points close to the
                camera plane.

        Returns
            new_points: transformed points with the same shape as the input.
        """
        world_to_ndc_transform = self.get_full_projection_transform(**kwargs)
        if not self.in_ndc():
            to_ndc_transform = self.get_ndc_camera_transform(**kwargs)
            world_to_ndc_transform = world_to_ndc_transform.compose(to_ndc_transform)

        return world_to_ndc_transform.transform_points(points, eps=eps)

    def transform_points_screen(
        self, points, eps: Optional[float] = None, with_xyflip: bool = True, **kwargs
    ) -> torch.Tensor:
        """
        Transforms points from PyTorch3D world/camera space to screen space.
        Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
        Output points are in screen space: +X right, +Y down, origin at top left corner.

        Args:
            points: torch tensor of shape (..., 3).
            eps: If eps!=None, the argument is used to clamp the
                divisor in the homogeneous normalization of the points
                transformed to the ndc space. Please see
                `transforms.Transform3d.transform_points` for details.

                For `CamerasBase.transform_points`, setting `eps > 0`
                stabilizes gradients since it leads to avoiding division
                by excessively low numbers for points close to the
                camera plane.
            with_xyflip: If True, flip x and y directions. In world/camera/ndc coords,
                +x points to the left and +y up. If with_xyflip is true, in screen
                coords +x points right, and +y down, following the usual RGB image
                convention. Warning: do not set to False unless you know what you're
                doing!

        Returns
            new_points: transformed points with the same shape as the input.
        """
        points_ndc = self.transform_points_ndc(points, eps=eps, **kwargs)
        image_size = kwargs.get("image_size", self.get_image_size())
        return get_ndc_to_screen_transform(self, with_xyflip=with_xyflip, image_size=image_size).transform_points(
            points_ndc, eps=eps
        )

    def clone(self):
        """
        Returns a copy of `self`.
        """
        cam_type = type(self)
        other = cam_type(device=self.device)
        return super().clone(other)

    def is_perspective(self):
        raise NotImplementedError()

    def in_ndc(self):
        """
        Specifies whether the camera is defined in NDC space
        or in screen (image) space
        """
        raise NotImplementedError()

    def get_znear(self):
        return getattr(self, "znear", None)

    def get_image_size(self):
        """
        Returns the image size, if provided, expected in the form of (height, width)
        The image size is used for conversion of projected points to screen coordinates.
        """
        return getattr(self, "image_size", None)

    def __getitem__(self, index: Union[int, List[int], torch.BoolTensor, torch.LongTensor]) -> "CamerasBase":
        """
        Override for the __getitem__ method in TensorProperties which needs to be
        refactored.

        Args:
            index: an integer index, list/tensor of integer indices, or tensor of boolean
                indicators used to filter all the fields in the cameras given by self._FIELDS.
        Returns:
            an instance of the current cameras class with only the values at the selected index.
        """

        kwargs = {}

        tensor_types = {
            # pyre-fixme[16]: Module `cuda` has no attribute `BoolTensor`.
            "bool": (torch.BoolTensor, torch.cuda.BoolTensor),
            # pyre-fixme[16]: Module `cuda` has no attribute `LongTensor`.
            "long": (torch.LongTensor, torch.cuda.LongTensor),
        }
        if not isinstance(index, (int, list, *tensor_types["bool"], *tensor_types["long"])) or (
            isinstance(index, list) and not all(isinstance(i, int) and not isinstance(i, bool) for i in index)
        ):
            msg = "Invalid index type, expected int, List[int] or Bool/LongTensor; got %r"
            raise ValueError(msg % type(index))

        if isinstance(index, int):
            index = [index]

        if isinstance(index, tensor_types["bool"]):
            # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
            #  LongTensor]` has no attribute `ndim`.
            # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
            #  LongTensor]` has no attribute `shape`.
            if index.ndim != 1 or index.shape[0] != len(self):
                raise ValueError(
                    # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
                    #  LongTensor]` has no attribute `shape`.
                    f"Boolean index of shape {index.shape} does not match cameras"
                )
        elif max(index) >= len(self):
            raise IndexError(f"Index {max(index)} is out of bounds for select cameras")

        for field in self._FIELDS:
            val = getattr(self, field, None)
            if val is None:
                continue

            # e.g. "in_ndc" is set as attribute "_in_ndc" on the class
            # but provided as "in_ndc" on initialization
            if field.startswith("_"):
                field = field[1:]

            if isinstance(val, (str, bool)):
                kwargs[field] = val
            elif isinstance(val, torch.Tensor):
                # In the init, all inputs will be converted to
                # tensors before setting as attributes
                kwargs[field] = val[index]
            else:
                raise ValueError(f"Field {field} type is not supported for indexing")

        kwargs["device"] = self.device
        return self.__class__(**kwargs)


############################################################
#             Field of View Camera Classes                 #
############################################################


def OpenGLPerspectiveCameras(
    znear: _BatchFloatType = 1.0,
    zfar: _BatchFloatType = 100.0,
    aspect_ratio: _BatchFloatType = 1.0,
    fov: _BatchFloatType = 60.0,
    degrees: bool = True,
    R: torch.Tensor = _R,
    T: torch.Tensor = _T,
    device: Device = "cpu",
) -> "FoVPerspectiveCameras":
    """
    OpenGLPerspectiveCameras has been DEPRECATED. Use FoVPerspectiveCameras instead.
    Preserving OpenGLPerspectiveCameras for backward compatibility.
    """

    warnings.warn(
        """OpenGLPerspectiveCameras is deprecated,
        Use FoVPerspectiveCameras instead.
        OpenGLPerspectiveCameras will be removed in future releases.""",
        PendingDeprecationWarning,
    )

    return FoVPerspectiveCameras(
        znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, degrees=degrees, R=R, T=T, device=device
    )


class FoVPerspectiveCameras(CamerasBase):
    """
    A class which stores a batch of parameters to generate a batch of
    projection matrices by specifying the field of view.
    The definitions of the parameters follow the OpenGL perspective camera.

    The extrinsics of the camera (R and T matrices) can also be set in the
    initializer or passed in to `get_full_projection_transform` to get
    the full transformation from world -> ndc.

    The `transform_points` method calculates the full world -> ndc transform
    and then applies it to the input points.

    The transforms can also be returned separately as Transform3d objects.

    * Setting the Aspect Ratio for Non Square Images *

    If the desired output image size is non square (i.e. a tuple of (H, W) where H != W)
    the aspect ratio needs special consideration: There are two aspect ratios
    to be aware of:
        - the aspect ratio of each pixel
        - the aspect ratio of the output image
    The `aspect_ratio` setting in the FoVPerspectiveCameras sets the
    pixel aspect ratio. When using this camera with the differentiable rasterizer
    be aware that in the rasterizer we assume square pixels, but allow
    variable image aspect ratio (i.e rectangle images).

    In most cases you will want to set the camera `aspect_ratio=1.0`
    (i.e. square pixels) and only vary the output image dimensions in pixels
    for rasterization.
    """

    # For __getitem__
    _FIELDS = ("K", "znear", "zfar", "aspect_ratio", "fov", "R", "T", "degrees")

    _SHARED_FIELDS = ("degrees",)

    def __init__(
        self,
        znear: _BatchFloatType = 1.0,
        zfar: _BatchFloatType = 100.0,
        aspect_ratio: _BatchFloatType = 1.0,
        fov: _BatchFloatType = 60.0,
        degrees: bool = True,
        R: torch.Tensor = _R,
        T: torch.Tensor = _T,
        K: Optional[torch.Tensor] = None,
        device: Device = "cpu",
    ) -> None:
        """

        Args:
            znear: near clipping plane of the view frustrum.
            zfar: far clipping plane of the view frustrum.
            aspect_ratio: aspect ratio of the image pixels.
                1.0 indicates square pixels.
            fov: field of view angle of the camera.
            degrees: bool, set to True if fov is specified in degrees.
            R: Rotation matrix of shape (N, 3, 3)
            T: Translation matrix of shape (N, 3)
            K: (optional) A calibration matrix of shape (N, 4, 4)
                If provided, don't need znear, zfar, fov, aspect_ratio, degrees
            device: Device (as str or torch.device)
        """
        # The initializer formats all inputs to torch tensors and broadcasts
        # all the inputs to have the same batch dimension where necessary.
        super().__init__(device=device, znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, R=R, T=T, K=K)

        # No need to convert to tensor or broadcast.
        self.degrees = degrees

    def compute_projection_matrix(self, znear, zfar, fov, aspect_ratio, degrees: bool) -> torch.Tensor:
        """
        Compute the calibration matrix K of shape (N, 4, 4)

        Args:
            znear: near clipping plane of the view frustrum.
            zfar: far clipping plane of the view frustrum.
            fov: field of view angle of the camera.
            aspect_ratio: aspect ratio of the image pixels.
                1.0 indicates square pixels.
            degrees: bool, set to True if fov is specified in degrees.

        Returns:
            torch.FloatTensor of the calibration matrix with shape (N, 4, 4)
        """
        K = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
        ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
        if degrees:
            fov = (np.pi / 180) * fov

        if not torch.is_tensor(fov):
            fov = torch.tensor(fov, device=self.device)
        tanHalfFov = torch.tan((fov / 2))
        max_y = tanHalfFov * znear
        min_y = -max_y
        max_x = max_y * aspect_ratio
        min_x = -max_x

        # NOTE: In OpenGL the projection matrix changes the handedness of the
        # coordinate frame. i.e the NDC space positive z direction is the
        # camera space negative z direction. This is because the sign of the z
        # in the projection matrix is set to -1.0.
        # In pytorch3d we maintain a right handed coordinate system throughout
        # so the so the z sign is 1.0.
        z_sign = 1.0

        # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
        K[:, 0, 0] = 2.0 * znear / (max_x - min_x)
        # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
        K[:, 1, 1] = 2.0 * znear / (max_y - min_y)
        K[:, 0, 2] = (max_x + min_x) / (max_x - min_x)
        K[:, 1, 2] = (max_y + min_y) / (max_y - min_y)
        K[:, 3, 2] = z_sign * ones

        # NOTE: This maps the z coordinate from [0, 1] where z = 0 if the point
        # is at the near clipping plane and z = 1 when the point is at the far
        # clipping plane.
        K[:, 2, 2] = z_sign * zfar / (zfar - znear)
        K[:, 2, 3] = -(zfar * znear) / (zfar - znear)

        return K

    def get_projection_transform(self, **kwargs) -> Transform3d:
        """
        Calculate the perspective projection matrix with a symmetric
        viewing frustrum. Use column major order.
        The viewing frustrum will be projected into ndc, s.t.
        (max_x, max_y) -> (+1, +1)
        (min_x, min_y) -> (-1, -1)

        Args:
            **kwargs: parameters for the projection can be passed in as keyword
                arguments to override the default values set in `__init__`.

        Return:
            a Transform3d object which represents a batch of projection
            matrices of shape (N, 4, 4)

        .. code-block:: python

            h1 = (max_y + min_y)/(max_y - min_y)
            w1 = (max_x + min_x)/(max_x - min_x)
            tanhalffov = tan((fov/2))
            s1 = 1/tanhalffov
            s2 = 1/(tanhalffov * (aspect_ratio))

            # To map z to the range [0, 1] use:
            f1 =  far / (far - near)
            f2 = -(far * near) / (far - near)

            # Projection matrix
            K = [
                    [s1,   0,   w1,   0],
                    [0,   s2,   h1,   0],
                    [0,    0,   f1,  f2],
                    [0,    0,    1,   0],
            ]
        """
        K = kwargs.get("K", self.K)
        if K is not None:
            if K.shape != (self._N, 4, 4):
                msg = "Expected K to have shape of (%r, 4, 4)"
                raise ValueError(msg % (self._N))
        else:
            K = self.compute_projection_matrix(
                kwargs.get("znear", self.znear),
                kwargs.get("zfar", self.zfar),
                kwargs.get("fov", self.fov),
                kwargs.get("aspect_ratio", self.aspect_ratio),
                kwargs.get("degrees", self.degrees),
            )

        # Transpose the projection matrix as PyTorch3D transforms use row vectors.
        transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
        return transform

    def unproject_points(
        self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
    ) -> torch.Tensor:
        """>!
        FoV cameras further allow for passing depth in world units
        (`scaled_depth_input=False`) or in the [0, 1]-normalized units
        (`scaled_depth_input=True`)

        Args:
            scaled_depth_input: If `True`, assumes the input depth is in
                the [0, 1]-normalized units. If `False` the input depth is in
                the world units.
        """

        # obtain the relevant transformation to ndc
        if world_coordinates:
            to_ndc_transform = self.get_full_projection_transform()
        else:
            to_ndc_transform = self.get_projection_transform()

        if scaled_depth_input:
            # the input is scaled depth, so we don't have to do anything
            xy_sdepth = xy_depth
        else:
            # parse out important values from the projection matrix
            K_matrix = self.get_projection_transform(**kwargs.copy()).get_matrix()
            # parse out f1, f2 from K_matrix
            unsqueeze_shape = [1] * xy_depth.dim()
            unsqueeze_shape[0] = K_matrix.shape[0]
            f1 = K_matrix[:, 2, 2].reshape(unsqueeze_shape)
            f2 = K_matrix[:, 3, 2].reshape(unsqueeze_shape)
            # get the scaled depth
            sdepth = (f1 * xy_depth[..., 2:3] + f2) / xy_depth[..., 2:3]
            # concatenate xy + scaled depth
            xy_sdepth = torch.cat((xy_depth[..., 0:2], sdepth), dim=-1)

        # unproject with inverse of the projection
        unprojection_transform = to_ndc_transform.inverse()
        return unprojection_transform.transform_points(xy_sdepth)

    def is_perspective(self):
        return True

    def in_ndc(self):
        return True


def OpenGLOrthographicCameras(
    znear: _BatchFloatType = 1.0,
    zfar: _BatchFloatType = 100.0,
    top: _BatchFloatType = 1.0,
    bottom: _BatchFloatType = -1.0,
    left: _BatchFloatType = -1.0,
    right: _BatchFloatType = 1.0,
    scale_xyz=((1.0, 1.0, 1.0),),  # (1, 3)
    R: torch.Tensor = _R,
    T: torch.Tensor = _T,
    device: Device = "cpu",
) -> "FoVOrthographicCameras":
    """
    OpenGLOrthographicCameras has been DEPRECATED. Use FoVOrthographicCameras instead.
    Preserving OpenGLOrthographicCameras for backward compatibility.
    """

    warnings.warn(
        """OpenGLOrthographicCameras is deprecated,
        Use FoVOrthographicCameras instead.
        OpenGLOrthographicCameras will be removed in future releases.""",
        PendingDeprecationWarning,
    )

    return FoVOrthographicCameras(
        znear=znear,
        zfar=zfar,
        max_y=top,
        min_y=bottom,
        max_x=right,
        min_x=left,
        scale_xyz=scale_xyz,
        R=R,
        T=T,
        device=device,
    )


class FoVOrthographicCameras(CamerasBase):
    """
    A class which stores a batch of parameters to generate a batch of
    projection matrices by specifying the field of view.
    The definitions of the parameters follow the OpenGL orthographic camera.
    """

    # For __getitem__
    _FIELDS = ("K", "znear", "zfar", "R", "T", "max_y", "min_y", "max_x", "min_x", "scale_xyz")

    def __init__(
        self,
        znear: _BatchFloatType = 1.0,
        zfar: _BatchFloatType = 100.0,
        max_y: _BatchFloatType = 1.0,
        min_y: _BatchFloatType = -1.0,
        max_x: _BatchFloatType = 1.0,
        min_x: _BatchFloatType = -1.0,
        scale_xyz=((1.0, 1.0, 1.0),),  # (1, 3)
        R: torch.Tensor = _R,
        T: torch.Tensor = _T,
        K: Optional[torch.Tensor] = None,
        device: Device = "cpu",
    ):
        """

        Args:
            znear: near clipping plane of the view frustrum.
            zfar: far clipping plane of the view frustrum.
            max_y: maximum y coordinate of the frustrum.
            min_y: minimum y coordinate of the frustrum.
            max_x: maximum x coordinate of the frustrum.
            min_x: minimum x coordinate of the frustrum
            scale_xyz: scale factors for each axis of shape (N, 3).
            R: Rotation matrix of shape (N, 3, 3).
            T: Translation of shape (N, 3).
            K: (optional) A calibration matrix of shape (N, 4, 4)
                If provided, don't need znear, zfar, max_y, min_y, max_x, min_x, scale_xyz
            device: torch.device or string.

        Only need to set min_x, max_x, min_y, max_y for viewing frustrums
        which are non symmetric about the origin.
        """
        # The initializer formats all inputs to torch tensors and broadcasts
        # all the inputs to have the same batch dimension where necessary.
        super().__init__(
            device=device,
            znear=znear,
            zfar=zfar,
            max_y=max_y,
            min_y=min_y,
            max_x=max_x,
            min_x=min_x,
            scale_xyz=scale_xyz,
            R=R,
            T=T,
            K=K,
        )

    def compute_projection_matrix(self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz) -> torch.Tensor:
        """
        Compute the calibration matrix K of shape (N, 4, 4)

        Args:
            znear: near clipping plane of the view frustrum.
            zfar: far clipping plane of the view frustrum.
            max_x: maximum x coordinate of the frustrum.
            min_x: minimum x coordinate of the frustrum
            max_y: maximum y coordinate of the frustrum.
            min_y: minimum y coordinate of the frustrum.
            scale_xyz: scale factors for each axis of shape (N, 3).
        """
        K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device)
        ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
        # NOTE: OpenGL flips handedness of coordinate system between camera
        # space and NDC space so z sign is -ve. In PyTorch3D we maintain a
        # right handed coordinate system throughout.
        z_sign = +1.0

        K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0]
        K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1]
        K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x)
        K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y)
        K[:, 3, 3] = ones

        # NOTE: This maps the z coordinate to the range [0, 1] and replaces the
        # the OpenGL z normalization to [-1, 1]
        K[:, 2, 2] = z_sign * (1.0 / (zfar - znear)) * scale_xyz[:, 2]
        K[:, 2, 3] = -znear / (zfar - znear)

        return K

    def get_projection_transform(self, **kwargs) -> Transform3d:
        """
        Calculate the orthographic projection matrix.
        Use column major order.

        Args:
            **kwargs: parameters for the projection can be passed in to
                      override the default values set in __init__.
        Return:
            a Transform3d object which represents a batch of projection
               matrices of shape (N, 4, 4)

        .. code-block:: python

            scale_x = 2 / (max_x - min_x)
            scale_y = 2 / (max_y - min_y)
            scale_z = 2 / (far-near)
            mid_x = (max_x + min_x) / (max_x - min_x)
            mix_y = (max_y + min_y) / (max_y - min_y)
            mid_z = (far + near) / (far - near)

            K = [
                    [scale_x,        0,         0,  -mid_x],
                    [0,        scale_y,         0,  -mix_y],
                    [0,              0,  -scale_z,  -mid_z],
                    [0,              0,         0,       1],
            ]
        """
        K = kwargs.get("K", self.K)
        if K is not None:
            if K.shape != (self._N, 4, 4):
                msg = "Expected K to have shape of (%r, 4, 4)"
                raise ValueError(msg % (self._N))
        else:
            K = self.compute_projection_matrix(
                kwargs.get("znear", self.znear),
                kwargs.get("zfar", self.zfar),
                kwargs.get("max_x", self.max_x),
                kwargs.get("min_x", self.min_x),
                kwargs.get("max_y", self.max_y),
                kwargs.get("min_y", self.min_y),
                kwargs.get("scale_xyz", self.scale_xyz),
            )

        transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
        return transform

    def unproject_points(
        self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
    ) -> torch.Tensor:
        """>!
        FoV cameras further allow for passing depth in world units
        (`scaled_depth_input=False`) or in the [0, 1]-normalized units
        (`scaled_depth_input=True`)

        Args:
            scaled_depth_input: If `True`, assumes the input depth is in
                the [0, 1]-normalized units. If `False` the input depth is in
                the world units.
        """

        if world_coordinates:
            to_ndc_transform = self.get_full_projection_transform(**kwargs.copy())
        else:
            to_ndc_transform = self.get_projection_transform(**kwargs.copy())

        if scaled_depth_input:
            # the input depth is already scaled
            xy_sdepth = xy_depth
        else:
            # we have to obtain the scaled depth first
            K = self.get_projection_transform(**kwargs).get_matrix()
            unsqueeze_shape = [1] * K.dim()
            unsqueeze_shape[0] = K.shape[0]
            mid_z = K[:, 3, 2].reshape(unsqueeze_shape)
            scale_z = K[:, 2, 2].reshape(unsqueeze_shape)
            scaled_depth = scale_z * xy_depth[..., 2:3] + mid_z
            # cat xy and scaled depth
            xy_sdepth = torch.cat((xy_depth[..., :2], scaled_depth), dim=-1)
        # finally invert the transform
        unprojection_transform = to_ndc_transform.inverse()
        return unprojection_transform.transform_points(xy_sdepth)

    def is_perspective(self):
        return False

    def in_ndc(self):
        return True


############################################################
#             MultiView Camera Classes                     #
############################################################
"""
Note that the MultiView Cameras accept parameters in NDC space.
"""


def SfMPerspectiveCameras(
    focal_length: _FocalLengthType = 1.0,
    principal_point=((0.0, 0.0),),
    R: torch.Tensor = _R,
    T: torch.Tensor = _T,
    device: Device = "cpu",
) -> "PerspectiveCameras":
    """
    SfMPerspectiveCameras has been DEPRECATED. Use PerspectiveCameras instead.
    Preserving SfMPerspectiveCameras for backward compatibility.
    """

    warnings.warn(
        """SfMPerspectiveCameras is deprecated,
        Use PerspectiveCameras instead.
        SfMPerspectiveCameras will be removed in future releases.""",
        PendingDeprecationWarning,
    )

    return PerspectiveCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)


class PerspectiveCameras(CamerasBase):
    """
    A class which stores a batch of parameters to generate a batch of
    transformation matrices using the multi-view geometry convention for
    perspective camera.

    Parameters for this camera are specified in NDC if `in_ndc` is set to True.
    If parameters are specified in screen space, `in_ndc` must be set to False.
    """

    # For __getitem__
    _FIELDS = (
        "K",
        "R",
        "T",
        "focal_length",
        "principal_point",
        "_in_ndc",  # arg is in_ndc but attribute set as _in_ndc
        "image_size",
    )

    _SHARED_FIELDS = ("_in_ndc",)

    def __init__(
        self,
        focal_length: _FocalLengthType = 1.0,
        principal_point=((0.0, 0.0),),
        R: torch.Tensor = _R,
        T: torch.Tensor = _T,
        K: Optional[torch.Tensor] = None,
        device: Device = "cpu",
        in_ndc: bool = True,
        image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
    ) -> None:
        """

        Args:
            focal_length: Focal length of the camera in world units.
                A tensor of shape (N, 1) or (N, 2) for
                square and non-square pixels respectively.
            principal_point: xy coordinates of the center of
                the principal point of the camera in pixels.
                A tensor of shape (N, 2).
            in_ndc: True if camera parameters are specified in NDC.
                If camera parameters are in screen space, it must
                be set to False.
            R: Rotation matrix of shape (N, 3, 3)
            T: Translation matrix of shape (N, 3)
            K: (optional) A calibration matrix of shape (N, 4, 4)
                If provided, don't need focal_length, principal_point
            image_size: (height, width) of image size.
                A tensor of shape (N, 2) or a list/tuple. Required for screen cameras.
            device: torch.device or string
        """
        # The initializer formats all inputs to torch tensors and broadcasts
        # all the inputs to have the same batch dimension where necessary.
        kwargs = {"image_size": image_size} if image_size is not None else {}
        super().__init__(
            device=device,
            focal_length=focal_length,
            principal_point=principal_point,
            R=R,
            T=T,
            K=K,
            _in_ndc=in_ndc,
            **kwargs,  # pyre-ignore
        )
        if image_size is not None:
            if (self.image_size < 1).any():  # pyre-ignore
                raise ValueError("Image_size provided has invalid values")
        else:
            self.image_size = None

        # When focal length is provided as one value, expand to
        # create (N, 2) shape tensor
        if self.focal_length.ndim == 1:  # (N,)
            self.focal_length = self.focal_length[:, None]  # (N, 1)
        self.focal_length = self.focal_length.expand(-1, 2)  # (N, 2)

    def get_projection_transform(self, **kwargs) -> Transform3d:
        """
        Calculate the projection matrix using the
        multi-view geometry convention.

        Args:
            **kwargs: parameters for the projection can be passed in as keyword
                arguments to override the default values set in __init__.

        Returns:
            A `Transform3d` object with a batch of `N` projection transforms.

        .. code-block:: python

            fx = focal_length[:, 0]
            fy = focal_length[:, 1]
            px = principal_point[:, 0]
            py = principal_point[:, 1]

            K = [
                    [fx,   0,   px,   0],
                    [0,   fy,   py,   0],
                    [0,    0,    0,   1],
                    [0,    0,    1,   0],
            ]
        """
        K = kwargs.get("K", self.K)
        if K is not None:
            if K.shape != (self._N, 4, 4):
                msg = "Expected K to have shape of (%r, 4, 4)"
                raise ValueError(msg % (self._N))
        else:
            K = _get_sfm_calibration_matrix(
                self._N,
                self.device,
                kwargs.get("focal_length", self.focal_length),
                kwargs.get("principal_point", self.principal_point),
                orthographic=False,
            )

        transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
        return transform

    def unproject_points(
        self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
    ) -> torch.Tensor:
        """
        Args:
            from_ndc: If `False` (default), assumes xy part of input is in
                NDC space if self.in_ndc(), otherwise in screen space. If
                `True`, assumes xy is in NDC space even if the camera
                is defined in screen space.
        """
        if world_coordinates:
            to_camera_transform = self.get_full_projection_transform(**kwargs)
        else:
            to_camera_transform = self.get_projection_transform(**kwargs)
        if from_ndc:
            to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())

        unprojection_transform = to_camera_transform.inverse()
        xy_inv_depth = torch.cat((xy_depth[..., :2], 1.0 / xy_depth[..., 2:3]), dim=-1)  # type: ignore
        return unprojection_transform.transform_points(xy_inv_depth)

    def get_principal_point(self, **kwargs) -> torch.Tensor:
        """
        Return the camera's principal point

        Args:
            **kwargs: parameters for the camera extrinsics can be passed in
                as keyword arguments to override the default values
                set in __init__.
        """
        proj_mat = self.get_projection_transform(**kwargs).get_matrix()
        return proj_mat[:, 2, :2]

    def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
        """
        Returns the transform from camera projection space (screen or NDC) to NDC space.
        If the camera is defined already in NDC space, the transform is identity.
        For cameras defined in screen space, we adjust the principal point computation
        which is defined in the image space (commonly) and scale the points to NDC space.

        This transform leaves the depth unchanged.

        Important: This transforms assumes PyTorch3D conventions for the input points,
        i.e. +X left, +Y up.
        """
        if self.in_ndc():
            ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
        else:
            # when cameras are defined in screen/image space, the principal point is
            # provided in the (+X right, +Y down), aka image, coordinate system.
            # Since input points are defined in the PyTorch3D system (+X left, +Y up),
            # we need to adjust for the principal point transform.
            pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
            pr_point_fix[:, 0, 0] = 1.0
            pr_point_fix[:, 1, 1] = 1.0
            pr_point_fix[:, 2, 2] = 1.0
            pr_point_fix[:, 3, 3] = 1.0
            pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
            pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
            image_size = kwargs.get("image_size", self.get_image_size())
            screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
            ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)

        return ndc_transform

    def is_perspective(self):
        return True

    def in_ndc(self):
        return self._in_ndc


def SfMOrthographicCameras(
    focal_length: _FocalLengthType = 1.0,
    principal_point=((0.0, 0.0),),
    R: torch.Tensor = _R,
    T: torch.Tensor = _T,
    device: Device = "cpu",
) -> "OrthographicCameras":
    """
    SfMOrthographicCameras has been DEPRECATED. Use OrthographicCameras instead.
    Preserving SfMOrthographicCameras for backward compatibility.
    """

    warnings.warn(
        """SfMOrthographicCameras is deprecated,
        Use OrthographicCameras instead.
        SfMOrthographicCameras will be removed in future releases.""",
        PendingDeprecationWarning,
    )

    return OrthographicCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)


class OrthographicCameras(CamerasBase):
    """
    A class which stores a batch of parameters to generate a batch of
    transformation matrices using the multi-view geometry convention for
    orthographic camera.

    Parameters for this camera are specified in NDC if `in_ndc` is set to True.
    If parameters are specified in screen space, `in_ndc` must be set to False.
    """

    # For __getitem__
    _FIELDS = ("K", "R", "T", "focal_length", "principal_point", "_in_ndc", "image_size")

    _SHARED_FIELDS = ("_in_ndc",)

    def __init__(
        self,
        focal_length: _FocalLengthType = 1.0,
        principal_point=((0.0, 0.0),),
        R: torch.Tensor = _R,
        T: torch.Tensor = _T,
        K: Optional[torch.Tensor] = None,
        device: Device = "cpu",
        in_ndc: bool = True,
        image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
    ) -> None:
        """

        Args:
            focal_length: Focal length of the camera in world units.
                A tensor of shape (N, 1) or (N, 2) for
                square and non-square pixels respectively.
            principal_point: xy coordinates of the center of
                the principal point of the camera in pixels.
                A tensor of shape (N, 2).
            in_ndc: True if camera parameters are specified in NDC.
                If False, then camera parameters are in screen space.
            R: Rotation matrix of shape (N, 3, 3)
            T: Translation matrix of shape (N, 3)
            K: (optional) A calibration matrix of shape (N, 4, 4)
                If provided, don't need focal_length, principal_point, image_size
            image_size: (height, width) of image size.
                A tensor of shape (N, 2) or list/tuple. Required for screen cameras.
            device: torch.device or string
        """
        # The initializer formats all inputs to torch tensors and broadcasts
        # all the inputs to have the same batch dimension where necessary.
        kwargs = {"image_size": image_size} if image_size is not None else {}
        super().__init__(
            device=device,
            focal_length=focal_length,
            principal_point=principal_point,
            R=R,
            T=T,
            K=K,
            _in_ndc=in_ndc,
            **kwargs,  # pyre-ignore
        )
        if image_size is not None:
            if (self.image_size < 1).any():  # pyre-ignore
                raise ValueError("Image_size provided has invalid values")
        else:
            self.image_size = None

        # When focal length is provided as one value, expand to
        # create (N, 2) shape tensor
        if self.focal_length.ndim == 1:  # (N,)
            self.focal_length = self.focal_length[:, None]  # (N, 1)
        self.focal_length = self.focal_length.expand(-1, 2)  # (N, 2)

    def get_projection_transform(self, **kwargs) -> Transform3d:
        """
        Calculate the projection matrix using
        the multi-view geometry convention.

        Args:
            **kwargs: parameters for the projection can be passed in as keyword
                arguments to override the default values set in __init__.

        Returns:
            A `Transform3d` object with a batch of `N` projection transforms.

        .. code-block:: python

            fx = focal_length[:,0]
            fy = focal_length[:,1]
            px = principal_point[:,0]
            py = principal_point[:,1]

            K = [
                    [fx,   0,    0,  px],
                    [0,   fy,    0,  py],
                    [0,    0,    1,   0],
                    [0,    0,    0,   1],
            ]
        """
        K = kwargs.get("K", self.K)
        if K is not None:
            if K.shape != (self._N, 4, 4):
                msg = "Expected K to have shape of (%r, 4, 4)"
                raise ValueError(msg % (self._N))
        else:
            K = _get_sfm_calibration_matrix(
                self._N,
                self.device,
                kwargs.get("focal_length", self.focal_length),
                kwargs.get("principal_point", self.principal_point),
                orthographic=True,
            )

        transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
        return transform

    def unproject_points(
        self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
    ) -> torch.Tensor:
        """
        Args:
            from_ndc: If `False` (default), assumes xy part of input is in
                NDC space if self.in_ndc(), otherwise in screen space. If
                `True`, assumes xy is in NDC space even if the camera
                is defined in screen space.
        """
        if world_coordinates:
            to_camera_transform = self.get_full_projection_transform(**kwargs)
        else:
            to_camera_transform = self.get_projection_transform(**kwargs)
        if from_ndc:
            to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())

        unprojection_transform = to_camera_transform.inverse()
        return unprojection_transform.transform_points(xy_depth)

    def get_principal_point(self, **kwargs) -> torch.Tensor:
        """
        Return the camera's principal point

        Args:
            **kwargs: parameters for the camera extrinsics can be passed in
                as keyword arguments to override the default values
                set in __init__.
        """
        proj_mat = self.get_projection_transform(**kwargs).get_matrix()
        return proj_mat[:, 3, :2]

    def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
        """
        Returns the transform from camera projection space (screen or NDC) to NDC space.
        If the camera is defined already in NDC space, the transform is identity.
        For cameras defined in screen space, we adjust the principal point computation
        which is defined in the image space (commonly) and scale the points to NDC space.

        Important: This transforms assumes PyTorch3D conventions for the input points,
        i.e. +X left, +Y up.
        """
        if self.in_ndc():
            ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
        else:
            # when cameras are defined in screen/image space, the principal point is
            # provided in the (+X right, +Y down), aka image, coordinate system.
            # Since input points are defined in the PyTorch3D system (+X left, +Y up),
            # we need to adjust for the principal point transform.
            pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
            pr_point_fix[:, 0, 0] = 1.0
            pr_point_fix[:, 1, 1] = 1.0
            pr_point_fix[:, 2, 2] = 1.0
            pr_point_fix[:, 3, 3] = 1.0
            pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
            pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
            image_size = kwargs.get("image_size", self.get_image_size())
            screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
            ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)

        return ndc_transform

    def is_perspective(self):
        return False

    def in_ndc(self):
        return self._in_ndc


################################################
#       Helper functions for cameras           #
################################################


def _get_sfm_calibration_matrix(
    N: int, device: Device, focal_length, principal_point, orthographic: bool = False
) -> torch.Tensor:
    """
    Returns a calibration matrix of a perspective/orthographic camera.

    Args:
        N: Number of cameras.
        focal_length: Focal length of the camera.
        principal_point: xy coordinates of the center of
            the principal point of the camera in pixels.
        orthographic: Boolean specifying if the camera is orthographic or not

        The calibration matrix `K` is set up as follows:

        .. code-block:: python

            fx = focal_length[:,0]
            fy = focal_length[:,1]
            px = principal_point[:,0]
            py = principal_point[:,1]

            for orthographic==True:
                K = [
                        [fx,   0,    0,  px],
                        [0,   fy,    0,  py],
                        [0,    0,    1,   0],
                        [0,    0,    0,   1],
                ]
            else:
                K = [
                        [fx,   0,   px,   0],
                        [0,   fy,   py,   0],
                        [0,    0,    0,   1],
                        [0,    0,    1,   0],
                ]

    Returns:
        A calibration matrix `K` of the SfM-conventioned camera
        of shape (N, 4, 4).
    """

    if not torch.is_tensor(focal_length):
        focal_length = torch.tensor(focal_length, device=device)

    if focal_length.ndim in (0, 1) or focal_length.shape[1] == 1:
        fx = fy = focal_length
    else:
        fx, fy = focal_length.unbind(1)

    if not torch.is_tensor(principal_point):
        principal_point = torch.tensor(principal_point, device=device)

    px, py = principal_point.unbind(1)

    K = fx.new_zeros(N, 4, 4)
    K[:, 0, 0] = fx
    K[:, 1, 1] = fy
    if orthographic:
        K[:, 0, 3] = px
        K[:, 1, 3] = py
        K[:, 2, 2] = 1.0
        K[:, 3, 3] = 1.0
    else:
        K[:, 0, 2] = px
        K[:, 1, 2] = py
        K[:, 3, 2] = 1.0
        K[:, 2, 3] = 1.0

    return K


################################################
# Helper functions for world to view transforms
################################################


def get_world_to_view_transform(R: torch.Tensor = _R, T: torch.Tensor = _T) -> Transform3d:
    """
    This function returns a Transform3d representing the transformation
    matrix to go from world space to view space by applying a rotation and
    a translation.

    PyTorch3D uses the same convention as Hartley & Zisserman.
    I.e., for camera extrinsic parameters R (rotation) and T (translation),
    we map a 3D point `X_world` in world coordinates to
    a point `X_cam` in camera coordinates with:
    `X_cam = X_world R + T`

    Args:
        R: (N, 3, 3) matrix representing the rotation.
        T: (N, 3) matrix representing the translation.

    Returns:
        a Transform3d object which represents the composed RT transformation.

    """
    # TODO: also support the case where RT is specified as one matrix
    # of shape (N, 4, 4).

    if T.shape[0] != R.shape[0]:
        msg = "Expected R, T to have the same batch dimension; got %r, %r"
        raise ValueError(msg % (R.shape[0], T.shape[0]))
    if T.dim() != 2 or T.shape[1:] != (3,):
        msg = "Expected T to have shape (N, 3); got %r"
        raise ValueError(msg % repr(T.shape))
    if R.dim() != 3 or R.shape[1:] != (3, 3):
        msg = "Expected R to have shape (N, 3, 3); got %r"
        raise ValueError(msg % repr(R.shape))

    # Create a Transform3d object
    T_ = Translate(T, device=T.device)
    R_ = Rotate(R, device=R.device)
    return R_.compose(T_)


def camera_position_from_spherical_angles(
    distance: float, elevation: float, azimuth: float, degrees: bool = True, device: Device = "cpu"
) -> torch.Tensor:
    """
    Calculate the location of the camera based on the distance away from
    the target point, the elevation and azimuth angles.

    Args:
        distance: distance of the camera from the object.
        elevation, azimuth: angles.
            The inputs distance, elevation and azimuth can be one of the following
                - Python scalar
                - Torch scalar
                - Torch tensor of shape (N) or (1)
        degrees: bool, whether the angles are specified in degrees or radians.
        device: str or torch.device, device for new tensors to be placed on.

    The vectors are broadcast against each other so they all have shape (N, 1).

    Returns:
        camera_position: (N, 3) xyz location of the camera.
    """
    broadcasted_args = convert_to_tensors_and_broadcast(distance, elevation, azimuth, device=device)
    dist, elev, azim = broadcasted_args
    if degrees:
        elev = math.pi / 180.0 * elev
        azim = math.pi / 180.0 * azim
    x = dist * torch.cos(elev) * torch.sin(azim)
    y = dist * torch.sin(elev)
    z = dist * torch.cos(elev) * torch.cos(azim)
    camera_position = torch.stack([x, y, z], dim=1)
    if camera_position.dim() == 0:
        camera_position = camera_position.view(1, -1)  # add batch dim.
    return camera_position.view(-1, 3)


def look_at_rotation(camera_position, at=((0, 0, 0),), up=((0, 1, 0),), device: Device = "cpu") -> torch.Tensor:
    """
    This function takes a vector 'camera_position' which specifies the location
    of the camera in world coordinates and two vectors `at` and `up` which
    indicate the position of the object and the up directions of the world
    coordinate system respectively. The object is assumed to be centered at
    the origin.

    The output is a rotation matrix representing the transformation
    from world coordinates -> view coordinates.

    Args:
        camera_position: position of the camera in world coordinates
        at: position of the object in world coordinates
        up: vector specifying the up direction in the world coordinate frame.

    The inputs camera_position, at and up can each be a
        - 3 element tuple/list
        - torch tensor of shape (1, 3)
        - torch tensor of shape (N, 3)

    The vectors are broadcast against each other so they all have shape (N, 3).

    Returns:
        R: (N, 3, 3) batched rotation matrices
    """
    # Format input and broadcast
    broadcasted_args = convert_to_tensors_and_broadcast(camera_position, at, up, device=device)
    camera_position, at, up = broadcasted_args
    for t, n in zip([camera_position, at, up], ["camera_position", "at", "up"]):
        if t.shape[-1] != 3:
            msg = "Expected arg %s to have shape (N, 3); got %r"
            raise ValueError(msg % (n, t.shape))
    z_axis = F.normalize(at - camera_position, eps=1e-5)
    x_axis = F.normalize(torch.cross(up, z_axis, dim=1), eps=1e-5)
    y_axis = F.normalize(torch.cross(z_axis, x_axis, dim=1), eps=1e-5)
    is_close = torch.isclose(x_axis, torch.tensor(0.0), atol=5e-3).all(dim=1, keepdim=True)
    if is_close.any():
        replacement = F.normalize(torch.cross(y_axis, z_axis, dim=1), eps=1e-5)
        x_axis = torch.where(is_close, replacement, x_axis)
    R = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1)
    return R.transpose(1, 2)


def look_at_view_transform(
    dist: _BatchFloatType = 1.0,
    elev: _BatchFloatType = 0.0,
    azim: _BatchFloatType = 0.0,
    degrees: bool = True,
    eye: Optional[Union[Sequence, torch.Tensor]] = None,
    at=((0, 0, 0),),  # (1, 3)
    up=((0, 1, 0),),  # (1, 3)
    device: Device = "cpu",
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    This function returns a rotation and translation matrix
    to apply the 'Look At' transformation from world -> view coordinates [0].

    Args:
        dist: distance of the camera from the object
        elev: angle in degrees or radians. This is the angle between the
            vector from the object to the camera, and the horizontal plane y = 0 (xz-plane).
        azim: angle in degrees or radians. The vector from the object to
            the camera is projected onto a horizontal plane y = 0.
            azim is the angle between the projected vector and a
            reference vector at (0, 0, 1) on the reference plane (the horizontal plane).
        dist, elev and azim can be of shape (1), (N).
        degrees: boolean flag to indicate if the elevation and azimuth
            angles are specified in degrees or radians.
        eye: the position of the camera(s) in world coordinates. If eye is not
            None, it will override the camera position derived from dist, elev, azim.
        up: the direction of the x axis in the world coordinate system.
        at: the position of the object(s) in world coordinates.
        eye, up and at can be of shape (1, 3) or (N, 3).

    Returns:
        2-element tuple containing

        - **R**: the rotation to apply to the points to align with the camera.
        - **T**: the translation to apply to the points to align with the camera.

    References:
    [0] https://www.scratchapixel.com
    """

    if eye is not None:
        broadcasted_args = convert_to_tensors_and_broadcast(eye, at, up, device=device)
        eye, at, up = broadcasted_args
        C = eye
    else:
        broadcasted_args = convert_to_tensors_and_broadcast(dist, elev, azim, at, up, device=device)
        dist, elev, azim, at, up = broadcasted_args
        C = camera_position_from_spherical_angles(dist, elev, azim, degrees=degrees, device=device) + at

    R = look_at_rotation(C, at, up, device=device)
    T = -torch.bmm(R.transpose(1, 2), C[:, :, None])[:, :, 0]
    return R, T


def get_ndc_to_screen_transform(
    cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
) -> Transform3d:
    """
    PyTorch3D NDC to screen conversion.
    Conversion from PyTorch3D's NDC space (+X left, +Y up) to screen/image space
    (+X right, +Y down, origin top left).

    Args:
        cameras
        with_xyflip: flips x- and y-axis if set to True.
    Optional kwargs:
        image_size: ((height, width),) specifying the height, width
        of the image. If not provided, it reads it from cameras.

    We represent the NDC to screen conversion as a Transform3d
    with projection matrix

    K = [
            [s,   0,    0,  cx],
            [0,   s,    0,  cy],
            [0,   0,    1,   0],
            [0,   0,    0,   1],
    ]

    """
    # We require the image size, which is necessary for the transform
    if image_size is None:
        msg = "For NDC to screen conversion, image_size=(height, width) needs to be specified."
        raise ValueError(msg)

    K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32)
    if not torch.is_tensor(image_size):
        image_size = torch.tensor(image_size, device=cameras.device)
    # pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any,
    #  ...]]` has no attribute `view`.
    image_size = image_size.view(-1, 2)  # of shape (1 or B)x2
    height, width = image_size.unbind(1)

    # For non square images, we scale the points such that smallest side
    # has range [-1, 1] and the largest side has range [-u, u], with u > 1.
    # This convention is consistent with the PyTorch3D renderer
    scale = (image_size.min(dim=1).values - 0.0) / 2.0

    K[:, 0, 0] = scale
    K[:, 1, 1] = scale
    K[:, 0, 3] = -1.0 * (width - 0.0) / 2.0
    K[:, 1, 3] = -1.0 * (height - 0.0) / 2.0
    K[:, 2, 2] = 1.0
    K[:, 3, 3] = 1.0

    # Transpose the projection matrix as PyTorch3D transforms use row vectors.
    transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=cameras.device)

    if with_xyflip:
        # flip x, y axis
        xyflip = torch.eye(4, device=cameras.device, dtype=torch.float32)
        xyflip[0, 0] = -1.0
        xyflip[1, 1] = -1.0
        xyflip = xyflip.view(1, 4, 4).expand(cameras._N, -1, -1)
        xyflip_transform = Transform3d(matrix=xyflip.transpose(1, 2).contiguous(), device=cameras.device)
        transform = transform.compose(xyflip_transform)
    return transform


def get_screen_to_ndc_transform(
    cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
) -> Transform3d:
    """
    Screen to PyTorch3D NDC conversion.
    Conversion from screen/image space (+X right, +Y down, origin top left)
    to PyTorch3D's NDC space (+X left, +Y up).

    Args:
        cameras
        with_xyflip: flips x- and y-axis if set to True.
    Optional kwargs:
        image_size: ((height, width),) specifying the height, width
        of the image. If not provided, it reads it from cameras.

    We represent the screen to NDC conversion as a Transform3d
    with projection matrix

    K = [
            [1/s,    0,    0,  cx/s],
            [  0,  1/s,    0,  cy/s],
            [  0,    0,    1,     0],
            [  0,    0,    0,     1],
    ]

    """
    transform = get_ndc_to_screen_transform(cameras, with_xyflip=with_xyflip, image_size=image_size).inverse()
    return transform


def try_get_projection_transform(cameras: CamerasBase, cameras_kwargs: Dict[str, Any]) -> Optional[Transform3d]:
    """
    Try block to get projection transform from cameras and cameras_kwargs.

    Args:
        cameras: cameras instance, can be linear cameras or nonliear cameras
        cameras_kwargs: camera parameters to be passed to cameras

    Returns:
        If the camera implemented projection_transform, return the
        projection transform; Otherwise, return None
    """

    transform = None
    try:
        transform = cameras.get_projection_transform(**cameras_kwargs)
    except NotImplementedError:
        pass
    return transform