File size: 24,452 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import datetime
import re
from collections import OrderedDict
from itertools import chain
from typing import List, Optional, Tuple

import numpy as np
import torch

from mmengine.device import get_max_cuda_memory, is_cuda_available
from mmengine.registry import LOG_PROCESSORS


@LOG_PROCESSORS.register_module()
class LogProcessor:
    """A log processor used to format log information collected from
    ``runner.message_hub.log_scalars``.

    ``LogProcessor`` instance is built by runner and will format
    ``runner.message_hub.log_scalars`` to ``tag`` and ``log_str``, which can
    directly used by ``LoggerHook`` and ``MMLogger``. Besides, the argument
    ``custom_cfg`` of constructor can control the statistics method of logs.

    Args:
        window_size (int): default smooth interval. Defaults to 10.
        by_epoch (bool): Whether to format logs with epoch stype. Defaults to
            True.
        custom_cfg (list[dict], optional): Contains multiple log config dict,
            in which key means the data source name of log and value means the
            statistic method and corresponding arguments used to count the
            data source. Defaults to None.

            - If custom_cfg is None, all logs will be formatted via default
              methods, such as smoothing loss by default window_size. If
              custom_cfg is defined as a list of config dict, for example:
              [dict(data_src='loss', method='mean', log_name='global_loss',
              window_size='global')]. It means the log item ``loss`` will be
              counted as global mean and additionally logged as ``global_loss``
              (defined by ``log_name``). If ``log_name`` is not defined in
              config dict, the original logged key will be overwritten.

            - The original log item cannot be overwritten twice. Here is
              an error example:
              [dict(data_src='loss', method='mean', window_size='global'),
              dict(data_src='loss', method='mean', window_size='epoch')].
              Both log config dict in custom_cfg do not have ``log_name`` key,
              which means the loss item will be overwritten twice.

            - For those statistic methods with the ``window_size`` argument,
              if ``by_epoch`` is set to False, ``windows_size`` should not be
              `epoch` to statistics log value by epoch.
        num_digits (int): The number of significant digit shown in the
            logging message. Defaults to 4.
        log_with_hierarchy (bool): Whether to log with hierarchy. If it is
            True, the information is written to visualizer backend such as
            :obj:`LocalVisBackend` and :obj:`TensorboardBackend`
            with hierarchy. For example, ``loss`` will be saved as
            ``train/loss``, and accuracy will be saved as ``val/accuracy``.
            Defaults to False.
            `New in version 0.7.0.`
        mean_pattern (str): This is a regular expression used to match the log
            that need to be included in the smoothing statistics.
            `New in version 0.7.3.`

    Examples:
        >>> # `log_name` is defined, `loss_large_window` will be an additional
        >>> # record.
        >>> log_processor = dict(
        >>>     window_size=10,
        >>>     by_epoch=True,
        >>>     custom_cfg=[dict(data_src='loss',
        >>>                       log_name='loss_large_window',
        >>>                       method_name='mean',
        >>>                       window_size=100)])
        >>> # `log_name` is not defined. `loss` will be overwritten.
        >>> log_processor = dict(
        >>>     window_size=10,
        >>>     by_epoch=True,
        >>>     custom_cfg=[dict(data_src='loss',
        >>>                       method_name='mean',
        >>>                       window_size=100)])
        >>> # Record loss with different statistics methods.
        >>> log_processor = dict(
        >>>     window_size=10,
        >>>     by_epoch=True,
        >>>     custom_cfg=[dict(data_src='loss',
        >>>                       log_name='loss_large_window',
        >>>                       method_name='mean',
        >>>                       window_size=100),
        >>>                  dict(data_src='loss',
        >>>                       method_name='mean',
        >>>                       window_size=100)])
        >>> # Overwrite loss item twice will raise an error.
        >>> log_processor = dict(
        >>>     window_size=10,
        >>>     by_epoch=True,
        >>>     custom_cfg=[dict(data_src='loss',
        >>>                       method_name='mean',
        >>>                       window_size=100),
        >>>                  dict(data_src='loss',
        >>>                       method_name='max',
        >>>                       window_size=100)])
        AssertionError
    """

    def __init__(self,
                 window_size=10,
                 by_epoch=True,
                 custom_cfg: Optional[List[dict]] = None,
                 num_digits: int = 4,
                 log_with_hierarchy: bool = False,
                 mean_pattern=r'.*(loss|time|data_time|grad_norm).*'):
        self.window_size = window_size
        self.by_epoch = by_epoch
        self.custom_cfg = custom_cfg if custom_cfg else []
        self.num_digits = num_digits
        self.log_with_hierarchy = log_with_hierarchy
        self.mean_pattern = re.compile(mean_pattern)
        self._check_custom_cfg()

    def get_log_after_iter(self, runner, batch_idx: int,
                           mode: str) -> Tuple[dict, str]:
        """Format log string after training, validation or testing iteration.

        Args:
            runner (Runner): The runner of training phase.
            batch_idx (int): The index of the current batch in the current
                loop.
            mode (str): Current mode of runner, train, test or val.

        Return:
            Tuple[dict, str]: Formatted log dict/string which will be
            recorded by :obj:`runner.message_hub` and :obj:`runner.visualizer`.
        """
        assert mode in ['train', 'test', 'val']
        # Overwrite ``window_size`` defined in ``custom_cfg`` to int value.
        parsed_cfg = self._parse_windows_size(runner, batch_idx,
                                              self.custom_cfg)
        # log_tag is used to write log information to terminal
        log_tag = self._collect_scalars(parsed_cfg, runner, mode)

        # If `self.log_with_hierarchy` is False, the tag is the same as
        # log_tag. Otherwise, each key in tag starts with prefix `train`,
        # `test` or `val`
        if not self.log_with_hierarchy:
            tag = copy.deepcopy(log_tag)
        else:
            tag = self._collect_scalars(parsed_cfg, runner, mode, True)

        # Record learning rate.
        lr_str_list = []
        for key, value in tag.items():
            if key.endswith('lr'):
                key = self._remove_prefix(key, f'{mode}/')
                log_tag.pop(key)
                lr_str_list.append(f'{key}: '
                                   f'{value:.{self.num_digits}e}')
        lr_str = ' '.join(lr_str_list)
        # Format log header.
        # by_epoch == True
        #   train/val: Epoch [5][5/10]  ...
        #   test: Epoch [5/10]
        # by_epoch == False
        #  train: Epoch [5/10000] ... (divided by `max_iter`)
        #  val/test: Epoch [5/2000] ... (divided by length of dataloader)
        if self.by_epoch:
            # Align the iteration log:
            # Epoch(train)  [  9][010/270]
            # ...                 ||| |||
            # Epoch(train)  [ 10][100/270]
            dataloader_len = self._get_dataloader_size(runner, mode)
            cur_iter = self._get_iter(runner, batch_idx)
            cur_iter_str = str(cur_iter).rjust(len(str(dataloader_len)))
            if mode in ['train', 'val']:
                cur_epoch = self._get_epoch(runner, mode)
                if not (isinstance(runner._train_loop, dict)
                        or runner._train_loop is None):
                    # Right Align the epoch log:
                    # Epoch(train)   [9][100/270]
                    # ...             ||
                    # Epoch(train) [100][100/270]
                    max_epochs = runner.max_epochs
                    # 3 means the three characters: "[", "]", and " " occupied
                    # in " [{max_epochs}]"
                    cur_epoch_str = f'[{cur_epoch}]'.rjust(
                        len(str(max_epochs)) + 3, ' ')
                else:
                    cur_epoch_str = f'[{cur_epoch}]'
                tag['epoch'] = cur_epoch
                log_str = (f'Epoch({mode}){cur_epoch_str}'
                           f'[{cur_iter_str}/{dataloader_len}]  ')
            else:
                log_str = (f'Epoch({mode}) '
                           f'[{cur_iter_str}/{dataloader_len}]  ')
        else:
            if mode == 'train':
                cur_iter = self._get_iter(runner, batch_idx)
                cur_iter_str = str(cur_iter).rjust(len(str(runner.max_iters)))
                log_str = (f'Iter({mode}) '
                           f'[{cur_iter_str}/{runner.max_iters}]  ')
            else:
                dataloader_len = self._get_dataloader_size(runner, mode)
                cur_iter_str = str(batch_idx + 1).rjust(
                    len(str(dataloader_len)))
                log_str = (f'Iter({mode}) [{cur_iter_str}/{dataloader_len}]  ')
        # Add global iter.
        if isinstance(runner._train_loop, dict) or runner._train_loop is None:
            tag['iter'] = 0
        else:
            tag['iter'] = runner.iter + 1
        # Concatenate lr, momentum string with log header.
        log_str += f'{lr_str}  '
        # If IterTimerHook used in runner, eta, time, and data_time should be
        # recorded.
        if (all(item in log_tag for item in ['time', 'data_time'])
                and 'eta' in runner.message_hub.runtime_info):
            eta = runner.message_hub.get_info('eta')
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            log_str += f'eta: {eta_str}  '
            log_str += (f'time: {log_tag["time"]:.{self.num_digits}f}  '
                        f'data_time: '
                        f'{log_tag["data_time"]:.{self.num_digits}f}  ')
            # Pop recorded keys
            log_tag.pop('time')
            log_tag.pop('data_time')

        # If cuda is available, the max memory occupied should be calculated.
        if is_cuda_available():
            max_memory = self._get_max_memory(runner)
            log_str += f'memory: {max_memory}  '
            tag['memory'] = max_memory
        # Loop left keys to fill `log_str`.
        if mode in ('train', 'val'):
            log_items = []
            for name, val in log_tag.items():
                if mode == 'val' and not name.startswith('val/loss'):
                    continue
                if isinstance(val, float):
                    val = f'{val:.{self.num_digits}f}'
                log_items.append(f'{name}: {val}')
            log_str += '  '.join(log_items)
        return tag, log_str

    def get_log_after_epoch(self,
                            runner,
                            batch_idx: int,
                            mode: str,
                            with_non_scalar: bool = False) -> Tuple[dict, str]:
        """Format log string after validation or testing epoch.

        Args:
            runner (Runner): The runner of validation/testing phase.
            batch_idx (int): The index of the current batch in the current
                loop.
            mode (str): Current mode of runner.
            with_non_scalar (bool): Whether to include non-scalar infos in the
                returned tag. Defaults to False.

        Return:
            Tuple[dict, str]: Formatted log dict/string which will be
            recorded by :obj:`runner.message_hub` and :obj:`runner.visualizer`.
        """
        assert mode in [
            'test', 'val'
        ], ('`_get_metric_log_str` only accept val or test mode, but got '
            f'{mode}')
        dataloader_len = self._get_dataloader_size(runner, mode)

        # By epoch:
        #     Epoch(val) [10][1000/1000]  ...
        #     Epoch(test) [1000/1000] ...
        # By iteration:
        #     Iteration(val) [1000/1000]  ...
        #     Iteration(test) [1000/1000]  ...
        if self.by_epoch:
            if mode == 'val':
                cur_epoch = self._get_epoch(runner, mode)
                log_str = (f'Epoch({mode}) [{cur_epoch}][{dataloader_len}/'
                           f'{dataloader_len}]  ')
            else:
                log_str = (
                    f'Epoch({mode}) [{dataloader_len}/{dataloader_len}]  ')

        else:
            log_str = (f'Iter({mode}) [{dataloader_len}/{dataloader_len}]  ')

        custom_cfg_copy = copy.deepcopy(self.custom_cfg)
        # remove prefix
        custom_keys = [
            self._remove_prefix(cfg['data_src'], f'{mode}/')
            for cfg in custom_cfg_copy
        ]
        # Count the averaged time and data_time by epoch
        if 'time' not in custom_keys:
            custom_cfg_copy.append(
                dict(data_src='time', window_size='epoch', method_name='mean'))
        if 'data_time' not in custom_keys:
            custom_cfg_copy.append(
                dict(
                    data_src='data_time',
                    window_size='epoch',
                    method_name='mean'))
        parsed_cfg = self._parse_windows_size(runner, batch_idx,
                                              custom_cfg_copy)
        # tag is used to write log information to different backends.
        ori_tag = self._collect_scalars(parsed_cfg, runner, mode,
                                        self.log_with_hierarchy)
        non_scalar_tag = self._collect_non_scalars(runner, mode)
        # move `time` or `data_time` to the end of the log
        tag = OrderedDict()
        time_tag = OrderedDict()
        for key, value in ori_tag.items():
            if key in (f'{mode}/time', f'{mode}/data_time', 'time',
                       'data_time'):
                time_tag[key] = value
            else:
                tag[key] = value
        # Log other messages.
        log_items = []
        log_str += '  '
        for name, val in chain(tag.items(), non_scalar_tag.items(),
                               time_tag.items()):
            if isinstance(val, float):
                val = f'{val:.{self.num_digits}f}'
            if isinstance(val, (torch.Tensor, np.ndarray)):
                # newline to display tensor and array.
                val = f'\n{val}\n'
            log_items.append(f'{name}: {val}')
        log_str += '  '.join(log_items)

        if with_non_scalar:
            tag.update(non_scalar_tag)
        tag.update(time_tag)
        return tag, log_str

    def _collect_scalars(self,
                         custom_cfg: List[dict],
                         runner,
                         mode: str,
                         reserve_prefix: bool = False) -> dict:
        """Collect log information to compose a dict according to mode.

        Args:
            custom_cfg (List[dict]): A copy of ``self.custom_cfg`` with int
                ``window_size``.
            runner (Runner): The runner of the training/testing/validation
                process.
            mode (str): Current mode of runner.
            reserve_prefix (bool): Whether to reserve the prefix of the key.

        Returns:
            dict: Statistical values of logs.
        """
        custom_cfg = copy.deepcopy(custom_cfg)
        tag = OrderedDict()
        # history_scalars of train/val/test phase.
        history_scalars = runner.message_hub.log_scalars
        # corresponding mode history_scalars
        mode_history_scalars = OrderedDict()
        # extract log scalars and remove prefix to `mode_history_scalars`
        # according to mode.
        for prefix_key, log_buffer in history_scalars.items():
            if prefix_key.startswith(mode):
                if not reserve_prefix:
                    key = self._remove_prefix(prefix_key, f'{mode}/')
                else:
                    key = prefix_key
                mode_history_scalars[key] = log_buffer
        for key in mode_history_scalars:
            # Update the latest learning rate and smoothed time logs.
            if re.search(self.mean_pattern, key) is not None:
                tag[key] = mode_history_scalars[key].mean(self.window_size)
            else:
                # Default statistic method is current.
                tag[key] = mode_history_scalars[key].current()
        # Update custom keys.
        for log_cfg in custom_cfg:
            data_src = log_cfg.pop('data_src')
            log_name = log_cfg.pop('log_name', data_src)
            if reserve_prefix:
                data_src = f'{mode}/{data_src}'
                log_name = f'{mode}/{log_name}'
            # log item in custom_cfg could only exist in train or val
            # mode.
            if data_src in mode_history_scalars:
                tag[log_name] = mode_history_scalars[data_src].statistics(
                    **log_cfg)
        return tag

    def _collect_non_scalars(self, runner, mode: str) -> dict:
        """Collect log information to compose a dict according to mode.

        Args:
            runner (Runner): The runner of the training/testing/validation
                process.
            mode (str): Current mode of runner.

        Returns:
            dict: non-scalar infos of the specified mode.
        """
        # infos of train/val/test phase.
        infos = runner.message_hub.runtime_info
        # corresponding mode infos
        mode_infos = OrderedDict()
        # extract log info and remove prefix to `mode_infos` according to mode.
        for prefix_key, value in infos.items():
            if prefix_key.startswith(mode):
                if self.log_with_hierarchy:
                    key = prefix_key
                else:
                    key = self._remove_prefix(prefix_key, f'{mode}/')
                mode_infos[key] = value
        return mode_infos

    def _remove_prefix(self, string: str, prefix: str):
        """Remove the prefix ``train``, ``val`` and ``test`` of the key."""
        if string.startswith(prefix):
            return string[len(prefix):]
        else:
            return string

    def _check_custom_cfg(self) -> None:
        """Check the legality of ``self.custom_cfg``."""

        def _check_window_size():
            for log_cfg in self.custom_cfg:
                if not self.by_epoch:
                    assert log_cfg['window_size'] != 'epoch', \
                        'window_size cannot be epoch if LoggerHook.by_epoch' \
                        ' is False.'

        def _check_repeated_log_name():
            # The `log_name` of the same data_src should not be repeated.
            # If `log_name` is not specified, `data_src` will be overwritten.
            # But only allowed to be overwritten once.
            check_set = set()
            for log_cfg in self.custom_cfg:
                assert 'data_src' in log_cfg
                data_src = log_cfg['data_src']
                log_name = log_cfg.get('log_name', data_src)
                assert log_name not in check_set, (
                    f'Found duplicate {log_name} for {data_src}. Please check'
                    'your `custom_cfg` for `log_processor`. You should '
                    f'neither define duplicate `{log_name}` for {data_src} '
                    f'nor do not define any {log_name} for multiple '
                    f'{data_src}, See more information in the docstring of '
                    'LogProcessor')

                check_set.add(log_name)

        _check_repeated_log_name()
        _check_window_size()

    def _parse_windows_size(self,
                            runner,
                            batch_idx: int,
                            custom_cfg: Optional[list] = None) -> list:
        """Parse window_size defined in custom_cfg to int value.

        Args:
            runner (Runner): The runner of the training/testing/validation
                process.
            batch_idx (int): The iteration index of current dataloader.
            custom_cfg (list): A copy of ``self.custom_cfg``. Defaults to None
                to keep backward compatibility.
        """
        if custom_cfg is None:
            custom_cfg = copy.deepcopy(self.custom_cfg)
        else:
            custom_cfg = copy.deepcopy(custom_cfg)
        for log_cfg in custom_cfg:
            window_size = log_cfg.get('window_size', None)
            if window_size is None or isinstance(window_size, int):
                continue
            elif window_size == 'epoch':
                log_cfg['window_size'] = batch_idx + 1
            elif window_size == 'global':
                log_cfg['window_size'] = runner.iter + 1
            else:
                raise TypeError(
                    'window_size should be int, epoch or global, but got '
                    f'invalid {window_size}')
        return custom_cfg

    def _get_max_memory(self, runner) -> int:
        """Returns the maximum GPU memory occupied by tensors in megabytes (MB)
        for a given device.

        Args:
            runner (Runner): The runner of the training/testing/validation
                process.

        Returns:
            The maximum GPU memory occupied by tensors in megabytes for a given
            device.
        """

        device = getattr(runner.model, 'output_device', None)
        return get_max_cuda_memory(device)

    def _get_iter(self, runner, batch_idx: int) -> int:
        """Get current iteration index.

        Args:
            runner (Runner): The runner of the training/testing/validation
                process.
            batch_idx (int): The iteration index of current
                dataloader. Defaults to None.

        Returns:
            int: The current global iter or inner iter.
        """
        if self.by_epoch:
            current_iter = batch_idx + 1
        else:
            current_iter = runner.iter + 1
        return current_iter

    def _get_epoch(self, runner, mode: str) -> int:
        """Get current epoch according to mode.

        Args:
            runner (Runner): The runner of the training/testing/validation
                process.
            mode (str): Current mode of runner.

        Returns:
            int: The current epoch.
        """
        if mode == 'train':
            epoch = runner.epoch + 1
        elif mode == 'val':
            if (isinstance(runner._train_loop, dict)
                    or runner._train_loop is None):
                epoch = 0
            else:
                # normal val mode
                # runner.epoch += 1 has been done before validation
                epoch = runner.epoch
        else:
            raise ValueError(
                f"runner mode should be 'train' or 'val', but got {mode}")
        return epoch

    def _get_cur_loop(self, runner, mode: str):
        """Get current loop according to mode.

        Args:
            runner (Runner): The runner of the training/validation/testing
                process.
            mode (str): Current mode of runner.

        Returns:
            BaseLoop: Current loop of runner.
        """
        # returns type hint will occur circular import
        if mode == 'train':
            return runner.train_loop
        elif mode == 'val':
            return runner.val_loop
        else:
            return runner.test_loop

    def _get_dataloader_size(self, runner, mode) -> int:
        """Get dataloader size of current loop.

        Args:
            runner (Runner): The runner of the training/validation/testing
            mode (str): Current mode of runner.

        Returns:
            int: The dataloader size of current loop.
        """
        return len(self._get_cur_loop(runner=runner, mode=mode).dataloader)