Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,515 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import time
from functools import partial
from typing import List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import fuse_conv_bn
# TODO need update
# from mmcv.runner import wrap_fp16_model
from mmengine import MMLogger
from mmengine.config import Config
from mmengine.device import get_max_cuda_memory
from mmengine.dist import get_world_size
from mmengine.runner import Runner, load_checkpoint
from mmengine.utils.dl_utils import set_multi_processing
from torch.nn.parallel import DistributedDataParallel
from mmdet.registry import DATASETS, MODELS
try:
import psutil
except ImportError:
psutil = None
def custom_round(value: Union[int, float],
factor: Union[int, float],
precision: int = 2) -> float:
"""Custom round function."""
return round(value / factor, precision)
gb_round = partial(custom_round, factor=1024**3)
def print_log(msg: str, logger: Optional[MMLogger] = None) -> None:
"""Print a log message."""
if logger is None:
print(msg, flush=True)
else:
logger.info(msg)
def print_process_memory(p: psutil.Process,
logger: Optional[MMLogger] = None) -> None:
"""print process memory info."""
mem_used = gb_round(psutil.virtual_memory().used)
memory_full_info = p.memory_full_info()
uss_mem = gb_round(memory_full_info.uss)
if hasattr(memory_full_info, 'pss'):
pss_mem = gb_round(memory_full_info.pss)
for children in p.children():
child_mem_info = children.memory_full_info()
uss_mem += gb_round(child_mem_info.uss)
if hasattr(child_mem_info, 'pss'):
pss_mem += gb_round(child_mem_info.pss)
process_count = 1 + len(p.children())
log_msg = f'(GB) mem_used: {mem_used:.2f} | uss: {uss_mem:.2f} | '
if hasattr(memory_full_info, 'pss'):
log_msg += f'pss: {pss_mem:.2f} | '
log_msg += f'total_proc: {process_count}'
print_log(log_msg, logger)
class BaseBenchmark:
"""The benchmark base class.
The ``run`` method is an external calling interface, and it will
call the ``run_once`` method ``repeat_num`` times for benchmarking.
Finally, call the ``average_multiple_runs`` method to further process
the results of multiple runs.
Args:
max_iter (int): maximum iterations of benchmark.
log_interval (int): interval of logging.
num_warmup (int): Number of Warmup.
logger (MMLogger, optional): Formatted logger used to record messages.
"""
def __init__(self,
max_iter: int,
log_interval: int,
num_warmup: int,
logger: Optional[MMLogger] = None):
self.max_iter = max_iter
self.log_interval = log_interval
self.num_warmup = num_warmup
self.logger = logger
def run(self, repeat_num: int = 1) -> dict:
"""benchmark entry method.
Args:
repeat_num (int): Number of repeat benchmark.
Defaults to 1.
"""
assert repeat_num >= 1
results = []
for _ in range(repeat_num):
results.append(self.run_once())
results = self.average_multiple_runs(results)
return results
def run_once(self) -> dict:
"""Executes the benchmark once."""
raise NotImplementedError()
def average_multiple_runs(self, results: List[dict]) -> dict:
"""Average the results of multiple runs."""
raise NotImplementedError()
class InferenceBenchmark(BaseBenchmark):
"""The inference benchmark class. It will be statistical inference FPS,
CUDA memory and CPU memory information.
Args:
cfg (mmengine.Config): config.
checkpoint (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
distributed (bool): distributed testing flag.
is_fuse_conv_bn (bool): Whether to fuse conv and bn, this will
slightly increase the inference speed.
max_iter (int): maximum iterations of benchmark. Defaults to 2000.
log_interval (int): interval of logging. Defaults to 50.
num_warmup (int): Number of Warmup. Defaults to 5.
logger (MMLogger, optional): Formatted logger used to record messages.
"""
def __init__(self,
cfg: Config,
checkpoint: str,
distributed: bool,
is_fuse_conv_bn: bool,
max_iter: int = 2000,
log_interval: int = 50,
num_warmup: int = 5,
logger: Optional[MMLogger] = None):
super().__init__(max_iter, log_interval, num_warmup, logger)
assert get_world_size(
) == 1, 'Inference benchmark does not allow distributed multi-GPU'
self.cfg = copy.deepcopy(cfg)
self.distributed = distributed
if psutil is None:
raise ImportError('psutil is not installed, please install it by: '
'pip install psutil')
self._process = psutil.Process()
env_cfg = self.cfg.get('env_cfg')
if env_cfg.get('cudnn_benchmark'):
torch.backends.cudnn.benchmark = True
mp_cfg: dict = env_cfg.get('mp_cfg', {})
set_multi_processing(**mp_cfg, distributed=self.distributed)
print_log('before build: ', self.logger)
print_process_memory(self._process, self.logger)
self.model = self._init_model(checkpoint, is_fuse_conv_bn)
# Because multiple processes will occupy additional CPU resources,
# FPS statistics will be more unstable when num_workers is not 0.
# It is reasonable to set num_workers to 0.
dataloader_cfg = cfg.test_dataloader
dataloader_cfg['num_workers'] = 0
dataloader_cfg['batch_size'] = 1
dataloader_cfg['persistent_workers'] = False
self.data_loader = Runner.build_dataloader(dataloader_cfg)
print_log('after build: ', self.logger)
print_process_memory(self._process, self.logger)
def _init_model(self, checkpoint: str, is_fuse_conv_bn: bool) -> nn.Module:
"""Initialize the model."""
model = MODELS.build(self.cfg.model)
# TODO need update
# fp16_cfg = self.cfg.get('fp16', None)
# if fp16_cfg is not None:
# wrap_fp16_model(model)
load_checkpoint(model, checkpoint, map_location='cpu')
if is_fuse_conv_bn:
model = fuse_conv_bn(model)
model = model.cuda()
if self.distributed:
model = DistributedDataParallel(
model,
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=False)
model.eval()
return model
def run_once(self) -> dict:
"""Executes the benchmark once."""
pure_inf_time = 0
fps = 0
for i, data in enumerate(self.data_loader):
if (i + 1) % self.log_interval == 0:
print_log('==================================', self.logger)
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
self.model.test_step(data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= self.num_warmup:
pure_inf_time += elapsed
if (i + 1) % self.log_interval == 0:
fps = (i + 1 - self.num_warmup) / pure_inf_time
cuda_memory = get_max_cuda_memory()
print_log(
f'Done image [{i + 1:<3}/{self.max_iter}], '
f'fps: {fps:.1f} img/s, '
f'times per image: {1000 / fps:.1f} ms/img, '
f'cuda memory: {cuda_memory} MB', self.logger)
print_process_memory(self._process, self.logger)
if (i + 1) == self.max_iter:
fps = (i + 1 - self.num_warmup) / pure_inf_time
break
return {'fps': fps}
def average_multiple_runs(self, results: List[dict]) -> dict:
"""Average the results of multiple runs."""
print_log('============== Done ==================', self.logger)
fps_list_ = [round(result['fps'], 1) for result in results]
avg_fps_ = sum(fps_list_) / len(fps_list_)
outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_}
if len(fps_list_) > 1:
times_pre_image_list_ = [
round(1000 / result['fps'], 1) for result in results
]
avg_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print_log(
f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, '
'times per image: '
f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] '
'ms/img', self.logger)
else:
print_log(
f'Overall fps: {fps_list_[0]:.1f} img/s, '
f'times per image: {1000 / fps_list_[0]:.1f} ms/img',
self.logger)
print_log(f'cuda memory: {get_max_cuda_memory()} MB', self.logger)
print_process_memory(self._process, self.logger)
return outputs
class DataLoaderBenchmark(BaseBenchmark):
"""The dataloader benchmark class. It will be statistical inference FPS and
CPU memory information.
Args:
cfg (mmengine.Config): config.
distributed (bool): distributed testing flag.
dataset_type (str): benchmark data type, only supports ``train``,
``val`` and ``test``.
max_iter (int): maximum iterations of benchmark. Defaults to 2000.
log_interval (int): interval of logging. Defaults to 50.
num_warmup (int): Number of Warmup. Defaults to 5.
logger (MMLogger, optional): Formatted logger used to record messages.
"""
def __init__(self,
cfg: Config,
distributed: bool,
dataset_type: str,
max_iter: int = 2000,
log_interval: int = 50,
num_warmup: int = 5,
logger: Optional[MMLogger] = None):
super().__init__(max_iter, log_interval, num_warmup, logger)
assert dataset_type in ['train', 'val', 'test'], \
'dataset_type only supports train,' \
f' val and test, but got {dataset_type}'
assert get_world_size(
) == 1, 'Dataloader benchmark does not allow distributed multi-GPU'
self.cfg = copy.deepcopy(cfg)
self.distributed = distributed
if psutil is None:
raise ImportError('psutil is not installed, please install it by: '
'pip install psutil')
self._process = psutil.Process()
mp_cfg = self.cfg.get('env_cfg', {}).get('mp_cfg')
if mp_cfg is not None:
set_multi_processing(distributed=self.distributed, **mp_cfg)
else:
set_multi_processing(distributed=self.distributed)
print_log('before build: ', self.logger)
print_process_memory(self._process, self.logger)
if dataset_type == 'train':
self.data_loader = Runner.build_dataloader(cfg.train_dataloader)
elif dataset_type == 'test':
self.data_loader = Runner.build_dataloader(cfg.test_dataloader)
else:
self.data_loader = Runner.build_dataloader(cfg.val_dataloader)
self.batch_size = self.data_loader.batch_size
self.num_workers = self.data_loader.num_workers
print_log('after build: ', self.logger)
print_process_memory(self._process, self.logger)
def run_once(self) -> dict:
"""Executes the benchmark once."""
pure_inf_time = 0
fps = 0
# benchmark with 2000 image and take the average
start_time = time.perf_counter()
for i, data in enumerate(self.data_loader):
elapsed = time.perf_counter() - start_time
if (i + 1) % self.log_interval == 0:
print_log('==================================', self.logger)
if i >= self.num_warmup:
pure_inf_time += elapsed
if (i + 1) % self.log_interval == 0:
fps = (i + 1 - self.num_warmup) / pure_inf_time
print_log(
f'Done batch [{i + 1:<3}/{self.max_iter}], '
f'fps: {fps:.1f} batch/s, '
f'times per batch: {1000 / fps:.1f} ms/batch, '
f'batch size: {self.batch_size}, num_workers: '
f'{self.num_workers}', self.logger)
print_process_memory(self._process, self.logger)
if (i + 1) == self.max_iter:
fps = (i + 1 - self.num_warmup) / pure_inf_time
break
start_time = time.perf_counter()
return {'fps': fps}
def average_multiple_runs(self, results: List[dict]) -> dict:
"""Average the results of multiple runs."""
print_log('============== Done ==================', self.logger)
fps_list_ = [round(result['fps'], 1) for result in results]
avg_fps_ = sum(fps_list_) / len(fps_list_)
outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_}
if len(fps_list_) > 1:
times_pre_image_list_ = [
round(1000 / result['fps'], 1) for result in results
]
avg_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print_log(
f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, '
'times per batch: '
f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] '
f'ms/batch, batch size: {self.batch_size}, num_workers: '
f'{self.num_workers}', self.logger)
else:
print_log(
f'Overall fps: {fps_list_[0]:.1f} batch/s, '
f'times per batch: {1000 / fps_list_[0]:.1f} ms/batch, '
f'batch size: {self.batch_size}, num_workers: '
f'{self.num_workers}', self.logger)
print_process_memory(self._process, self.logger)
return outputs
class DatasetBenchmark(BaseBenchmark):
"""The dataset benchmark class. It will be statistical inference FPS, FPS
pre transform and CPU memory information.
Args:
cfg (mmengine.Config): config.
dataset_type (str): benchmark data type, only supports ``train``,
``val`` and ``test``.
max_iter (int): maximum iterations of benchmark. Defaults to 2000.
log_interval (int): interval of logging. Defaults to 50.
num_warmup (int): Number of Warmup. Defaults to 5.
logger (MMLogger, optional): Formatted logger used to record messages.
"""
def __init__(self,
cfg: Config,
dataset_type: str,
max_iter: int = 2000,
log_interval: int = 50,
num_warmup: int = 5,
logger: Optional[MMLogger] = None):
super().__init__(max_iter, log_interval, num_warmup, logger)
assert dataset_type in ['train', 'val', 'test'], \
'dataset_type only supports train,' \
f' val and test, but got {dataset_type}'
assert get_world_size(
) == 1, 'Dataset benchmark does not allow distributed multi-GPU'
self.cfg = copy.deepcopy(cfg)
if dataset_type == 'train':
dataloader_cfg = copy.deepcopy(cfg.train_dataloader)
elif dataset_type == 'test':
dataloader_cfg = copy.deepcopy(cfg.test_dataloader)
else:
dataloader_cfg = copy.deepcopy(cfg.val_dataloader)
dataset_cfg = dataloader_cfg.pop('dataset')
dataset = DATASETS.build(dataset_cfg)
if hasattr(dataset, 'full_init'):
dataset.full_init()
self.dataset = dataset
def run_once(self) -> dict:
"""Executes the benchmark once."""
pure_inf_time = 0
fps = 0
total_index = list(range(len(self.dataset)))
np.random.shuffle(total_index)
start_time = time.perf_counter()
for i, idx in enumerate(total_index):
if (i + 1) % self.log_interval == 0:
print_log('==================================', self.logger)
get_data_info_start_time = time.perf_counter()
data_info = self.dataset.get_data_info(idx)
get_data_info_elapsed = time.perf_counter(
) - get_data_info_start_time
if (i + 1) % self.log_interval == 0:
print_log(f'get_data_info - {get_data_info_elapsed * 1000} ms',
self.logger)
for t in self.dataset.pipeline.transforms:
transform_start_time = time.perf_counter()
data_info = t(data_info)
transform_elapsed = time.perf_counter() - transform_start_time
if (i + 1) % self.log_interval == 0:
print_log(
f'{t.__class__.__name__} - '
f'{transform_elapsed * 1000} ms', self.logger)
if data_info is None:
break
elapsed = time.perf_counter() - start_time
if i >= self.num_warmup:
pure_inf_time += elapsed
if (i + 1) % self.log_interval == 0:
fps = (i + 1 - self.num_warmup) / pure_inf_time
print_log(
f'Done img [{i + 1:<3}/{self.max_iter}], '
f'fps: {fps:.1f} img/s, '
f'times per img: {1000 / fps:.1f} ms/img', self.logger)
if (i + 1) == self.max_iter:
fps = (i + 1 - self.num_warmup) / pure_inf_time
break
start_time = time.perf_counter()
return {'fps': fps}
def average_multiple_runs(self, results: List[dict]) -> dict:
"""Average the results of multiple runs."""
print_log('============== Done ==================', self.logger)
fps_list_ = [round(result['fps'], 1) for result in results]
avg_fps_ = sum(fps_list_) / len(fps_list_)
outputs = {'avg_fps': avg_fps_, 'fps_list': fps_list_}
if len(fps_list_) > 1:
times_pre_image_list_ = [
round(1000 / result['fps'], 1) for result in results
]
avg_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print_log(
f'Overall fps: {fps_list_}[{avg_fps_:.1f}] img/s, '
'times per img: '
f'{times_pre_image_list_}[{avg_times_pre_image_:.1f}] '
'ms/img', self.logger)
else:
print_log(
f'Overall fps: {fps_list_[0]:.1f} img/s, '
f'times per img: {1000 / fps_list_[0]:.1f} ms/img',
self.logger)
return outputs
|