Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,700 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os.path as osp
from typing import List
from mmengine import fileio
from mmdet.registry import DATASETS
from .base_semseg_dataset import BaseSegDataset
from .coco import CocoDataset
from .coco_panoptic import CocoPanopticDataset
ADE_PALETTE = [(120, 120, 120), (180, 120, 120), (6, 230, 230), (80, 50, 50),
(4, 200, 3), (120, 120, 80), (140, 140, 140), (204, 5, 255),
(230, 230, 230), (4, 250, 7), (224, 5, 255), (235, 255, 7),
(150, 5, 61), (120, 120, 70), (8, 255, 51), (255, 6, 82),
(143, 255, 140), (204, 255, 4), (255, 51, 7), (204, 70, 3),
(0, 102, 200), (61, 230, 250), (255, 6, 51), (11, 102, 255),
(255, 7, 71), (255, 9, 224), (9, 7, 230), (220, 220, 220),
(255, 9, 92), (112, 9, 255), (8, 255, 214), (7, 255, 224),
(255, 184, 6), (10, 255, 71), (255, 41, 10), (7, 255, 255),
(224, 255, 8), (102, 8, 255), (255, 61, 6), (255, 194, 7),
(255, 122, 8), (0, 255, 20), (255, 8, 41), (255, 5, 153),
(6, 51, 255), (235, 12, 255), (160, 150, 20), (0, 163, 255),
(140, 140, 140), (250, 10, 15), (20, 255, 0), (31, 255, 0),
(255, 31, 0), (255, 224, 0), (153, 255, 0), (0, 0, 255),
(255, 71, 0), (0, 235, 255), (0, 173, 255), (31, 0, 255),
(11, 200, 200), (255, 82, 0), (0, 255, 245), (0, 61, 255),
(0, 255, 112), (0, 255, 133), (255, 0, 0), (255, 163, 0),
(255, 102, 0), (194, 255, 0), (0, 143, 255), (51, 255, 0),
(0, 82, 255), (0, 255, 41), (0, 255, 173), (10, 0, 255),
(173, 255, 0), (0, 255, 153), (255, 92, 0), (255, 0, 255),
(255, 0, 245), (255, 0, 102), (255, 173, 0), (255, 0, 20),
(255, 184, 184), (0, 31, 255), (0, 255, 61), (0, 71, 255),
(255, 0, 204), (0, 255, 194), (0, 255, 82), (0, 10, 255),
(0, 112, 255), (51, 0, 255), (0, 194, 255), (0, 122, 255),
(0, 255, 163), (255, 153, 0), (0, 255, 10), (255, 112, 0),
(143, 255, 0), (82, 0, 255), (163, 255, 0), (255, 235, 0),
(8, 184, 170), (133, 0, 255), (0, 255, 92), (184, 0, 255),
(255, 0, 31), (0, 184, 255), (0, 214, 255), (255, 0, 112),
(92, 255, 0), (0, 224, 255), (112, 224, 255), (70, 184, 160),
(163, 0, 255), (153, 0, 255), (71, 255, 0), (255, 0, 163),
(255, 204, 0), (255, 0, 143), (0, 255, 235), (133, 255, 0),
(255, 0, 235), (245, 0, 255), (255, 0, 122), (255, 245, 0),
(10, 190, 212), (214, 255, 0), (0, 204, 255), (20, 0, 255),
(255, 255, 0), (0, 153, 255), (0, 41, 255), (0, 255, 204),
(41, 0, 255), (41, 255, 0), (173, 0, 255), (0, 245, 255),
(71, 0, 255), (122, 0, 255), (0, 255, 184), (0, 92, 255),
(184, 255, 0), (0, 133, 255), (255, 214, 0), (25, 194, 194),
(102, 255, 0), (92, 0, 255)]
@DATASETS.register_module()
class ADE20KPanopticDataset(CocoPanopticDataset):
METAINFO = {
'classes':
('bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain',
'chair', 'car', 'painting, picture', 'sofa', 'shelf', 'mirror',
'armchair', 'seat', 'fence', 'desk', 'wardrobe, closet, press',
'lamp', 'tub', 'rail', 'cushion', 'box', 'column, pillar',
'signboard, sign', 'chest of drawers, chest, bureau, dresser',
'counter', 'sink', 'fireplace', 'refrigerator, icebox', 'stairs',
'case, display case, showcase, vitrine',
'pool table, billiard table, snooker table', 'pillow',
'screen door, screen', 'bookcase', 'coffee table',
'toilet, can, commode, crapper, pot, potty, stool, throne', 'flower',
'book', 'bench', 'countertop', 'stove', 'palm, palm tree',
'kitchen island', 'computer', 'swivel chair', 'boat',
'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
'awning, sunshade, sunblind', 'street lamp', 'booth', 'tv',
'airplane', 'clothes', 'pole',
'bannister, banister, balustrade, balusters, handrail',
'ottoman, pouf, pouffe, puff, hassock', 'bottle', 'van', 'ship',
'fountain', 'washer, automatic washer, washing machine',
'plaything, toy', 'stool', 'barrel, cask', 'basket, handbasket',
'bag', 'minibike, motorbike', 'oven', 'ball', 'food, solid food',
'step, stair', 'trade name', 'microwave', 'pot', 'animal', 'bicycle',
'dishwasher', 'screen', 'sculpture', 'hood, exhaust hood', 'sconce',
'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate',
'monitor', 'bulletin board', 'radiator', 'glass, drinking glass',
'clock', 'flag', 'wall', 'building', 'sky', 'floor', 'tree',
'ceiling', 'road, route', 'grass', 'sidewalk, pavement',
'earth, ground', 'mountain, mount', 'plant', 'water', 'house', 'sea',
'rug', 'field', 'rock, stone', 'base, pedestal, stand', 'sand',
'skyscraper', 'grandstand, covered stand', 'path', 'runway',
'stairway, staircase', 'river', 'bridge, span', 'blind, screen',
'hill', 'bar', 'hovel, hut, hutch, shack, shanty', 'tower',
'dirt track', 'land, ground, soil',
'escalator, moving staircase, moving stairway',
'buffet, counter, sideboard',
'poster, posting, placard, notice, bill, card', 'stage',
'conveyer belt, conveyor belt, conveyer, conveyor, transporter',
'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank, storage tank',
'lake', 'blanket, cover', 'pier', 'crt screen', 'shower'),
'thing_classes':
('bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain',
'chair', 'car', 'painting, picture', 'sofa', 'shelf', 'mirror',
'armchair', 'seat', 'fence', 'desk', 'wardrobe, closet, press',
'lamp', 'tub', 'rail', 'cushion', 'box', 'column, pillar',
'signboard, sign', 'chest of drawers, chest, bureau, dresser',
'counter', 'sink', 'fireplace', 'refrigerator, icebox', 'stairs',
'case, display case, showcase, vitrine',
'pool table, billiard table, snooker table', 'pillow',
'screen door, screen', 'bookcase', 'coffee table',
'toilet, can, commode, crapper, pot, potty, stool, throne', 'flower',
'book', 'bench', 'countertop', 'stove', 'palm, palm tree',
'kitchen island', 'computer', 'swivel chair', 'boat',
'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
'awning, sunshade, sunblind', 'street lamp', 'booth', 'tv',
'airplane', 'clothes', 'pole',
'bannister, banister, balustrade, balusters, handrail',
'ottoman, pouf, pouffe, puff, hassock', 'bottle', 'van', 'ship',
'fountain', 'washer, automatic washer, washing machine',
'plaything, toy', 'stool', 'barrel, cask', 'basket, handbasket',
'bag', 'minibike, motorbike', 'oven', 'ball', 'food, solid food',
'step, stair', 'trade name', 'microwave', 'pot', 'animal', 'bicycle',
'dishwasher', 'screen', 'sculpture', 'hood, exhaust hood', 'sconce',
'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate',
'monitor', 'bulletin board', 'radiator', 'glass, drinking glass',
'clock', 'flag'),
'stuff_classes':
('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road, route',
'grass', 'sidewalk, pavement', 'earth, ground', 'mountain, mount',
'plant', 'water', 'house', 'sea', 'rug', 'field', 'rock, stone',
'base, pedestal, stand', 'sand', 'skyscraper',
'grandstand, covered stand', 'path', 'runway', 'stairway, staircase',
'river', 'bridge, span', 'blind, screen', 'hill', 'bar',
'hovel, hut, hutch, shack, shanty', 'tower', 'dirt track',
'land, ground, soil', 'escalator, moving staircase, moving stairway',
'buffet, counter, sideboard',
'poster, posting, placard, notice, bill, card', 'stage',
'conveyer belt, conveyor belt, conveyer, conveyor, transporter',
'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank, storage tank',
'lake', 'blanket, cover', 'pier', 'crt screen', 'shower'),
'palette':
ADE_PALETTE
}
@DATASETS.register_module()
class ADE20KInstanceDataset(CocoDataset):
METAINFO = {
'classes':
('bed', 'windowpane', 'cabinet', 'person', 'door', 'table', 'curtain',
'chair', 'car', 'painting', 'sofa', 'shelf', 'mirror', 'armchair',
'seat', 'fence', 'desk', 'wardrobe', 'lamp', 'bathtub', 'railing',
'cushion', 'box', 'column', 'signboard', 'chest of drawers',
'counter', 'sink', 'fireplace', 'refrigerator', 'stairs', 'case',
'pool table', 'pillow', 'screen door', 'bookcase', 'coffee table',
'toilet', 'flower', 'book', 'bench', 'countertop', 'stove', 'palm',
'kitchen island', 'computer', 'swivel chair', 'boat',
'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
'awning', 'streetlight', 'booth', 'television receiver', 'airplane',
'apparel', 'pole', 'bannister', 'ottoman', 'bottle', 'van', 'ship',
'fountain', 'washer', 'plaything', 'stool', 'barrel', 'basket', 'bag',
'minibike', 'oven', 'ball', 'food', 'step', 'trade name', 'microwave',
'pot', 'animal', 'bicycle', 'dishwasher', 'screen', 'sculpture',
'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan',
'plate', 'monitor', 'bulletin board', 'radiator', 'glass', 'clock',
'flag'),
'palette': [(204, 5, 255), (230, 230, 230), (224, 5, 255),
(150, 5, 61), (8, 255, 51), (255, 6, 82), (255, 51, 7),
(204, 70, 3), (0, 102, 200), (255, 6, 51), (11, 102, 255),
(255, 7, 71), (220, 220, 220), (8, 255, 214),
(7, 255, 224), (255, 184, 6), (10, 255, 71), (7, 255, 255),
(224, 255, 8), (102, 8, 255), (255, 61, 6), (255, 194, 7),
(0, 255, 20), (255, 8, 41), (255, 5, 153), (6, 51, 255),
(235, 12, 255), (0, 163, 255), (250, 10, 15), (20, 255, 0),
(255, 224, 0), (0, 0, 255), (255, 71, 0), (0, 235, 255),
(0, 173, 255), (0, 255, 245), (0, 255, 112), (0, 255, 133),
(255, 0, 0), (255, 163, 0), (194, 255, 0), (0, 143, 255),
(51, 255, 0), (0, 82, 255), (0, 255, 41), (0, 255, 173),
(10, 0, 255), (173, 255, 0), (255, 92, 0), (255, 0, 245),
(255, 0, 102), (255, 173, 0), (255, 0, 20), (0, 31, 255),
(0, 255, 61), (0, 71, 255), (255, 0, 204), (0, 255, 194),
(0, 255, 82), (0, 112, 255), (51, 0, 255), (0, 122, 255),
(255, 153, 0), (0, 255, 10), (163, 255, 0), (255, 235, 0),
(8, 184, 170), (184, 0, 255), (255, 0, 31), (0, 214, 255),
(255, 0, 112), (92, 255, 0), (70, 184, 160), (163, 0, 255),
(71, 255, 0), (255, 0, 163), (255, 204, 0), (255, 0, 143),
(133, 255, 0), (255, 0, 235), (245, 0, 255), (255, 0, 122),
(255, 245, 0), (214, 255, 0), (0, 204, 255), (255, 255, 0),
(0, 153, 255), (0, 41, 255), (0, 255, 204), (41, 0, 255),
(41, 255, 0), (173, 0, 255), (0, 245, 255), (0, 255, 184),
(0, 92, 255), (184, 255, 0), (255, 214, 0), (25, 194, 194),
(102, 255, 0), (92, 0, 255)],
}
@DATASETS.register_module()
class ADE20KSegDataset(BaseSegDataset):
"""ADE20K dataset.
In segmentation map annotation for ADE20K, 0 stands for background, which
is not included in 150 categories. The ``img_suffix`` is fixed to '.jpg',
and ``seg_map_suffix`` is fixed to '.png'.
"""
METAINFO = dict(
classes=('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk',
'person', 'earth', 'door', 'table', 'mountain', 'plant',
'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
'screen door', 'stairway', 'river', 'bridge', 'bookcase',
'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
'bench', 'countertop', 'stove', 'palm', 'kitchen island',
'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
'chandelier', 'awning', 'streetlight', 'booth',
'television receiver', 'airplane', 'dirt track', 'apparel',
'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
'conveyer belt', 'canopy', 'washer', 'plaything',
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
'clock', 'flag'),
palette=ADE_PALETTE)
def __init__(self,
img_suffix='.jpg',
seg_map_suffix='.png',
return_classes=False,
**kwargs) -> None:
self.return_classes = return_classes
super().__init__(
img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs)
def load_data_list(self) -> List[dict]:
"""Load annotation from directory or annotation file.
Returns:
List[dict]: All data info of dataset.
"""
data_list = []
img_dir = self.data_prefix.get('img_path', None)
ann_dir = self.data_prefix.get('seg_map_path', None)
for img in fileio.list_dir_or_file(
dir_path=img_dir,
list_dir=False,
suffix=self.img_suffix,
recursive=True,
backend_args=self.backend_args):
data_info = dict(img_path=osp.join(img_dir, img))
if ann_dir is not None:
seg_map = img.replace(self.img_suffix, self.seg_map_suffix)
data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
data_info['label_map'] = self.label_map
if self.return_classes:
data_info['text'] = list(self._metainfo['classes'])
data_list.append(data_info)
return data_list
|