File size: 15,700 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os.path as osp
from typing import List

from mmengine import fileio

from mmdet.registry import DATASETS
from .base_semseg_dataset import BaseSegDataset
from .coco import CocoDataset
from .coco_panoptic import CocoPanopticDataset

ADE_PALETTE = [(120, 120, 120), (180, 120, 120), (6, 230, 230), (80, 50, 50),
               (4, 200, 3), (120, 120, 80), (140, 140, 140), (204, 5, 255),
               (230, 230, 230), (4, 250, 7), (224, 5, 255), (235, 255, 7),
               (150, 5, 61), (120, 120, 70), (8, 255, 51), (255, 6, 82),
               (143, 255, 140), (204, 255, 4), (255, 51, 7), (204, 70, 3),
               (0, 102, 200), (61, 230, 250), (255, 6, 51), (11, 102, 255),
               (255, 7, 71), (255, 9, 224), (9, 7, 230), (220, 220, 220),
               (255, 9, 92), (112, 9, 255), (8, 255, 214), (7, 255, 224),
               (255, 184, 6), (10, 255, 71), (255, 41, 10), (7, 255, 255),
               (224, 255, 8), (102, 8, 255), (255, 61, 6), (255, 194, 7),
               (255, 122, 8), (0, 255, 20), (255, 8, 41), (255, 5, 153),
               (6, 51, 255), (235, 12, 255), (160, 150, 20), (0, 163, 255),
               (140, 140, 140), (250, 10, 15), (20, 255, 0), (31, 255, 0),
               (255, 31, 0), (255, 224, 0), (153, 255, 0), (0, 0, 255),
               (255, 71, 0), (0, 235, 255), (0, 173, 255), (31, 0, 255),
               (11, 200, 200), (255, 82, 0), (0, 255, 245), (0, 61, 255),
               (0, 255, 112), (0, 255, 133), (255, 0, 0), (255, 163, 0),
               (255, 102, 0), (194, 255, 0), (0, 143, 255), (51, 255, 0),
               (0, 82, 255), (0, 255, 41), (0, 255, 173), (10, 0, 255),
               (173, 255, 0), (0, 255, 153), (255, 92, 0), (255, 0, 255),
               (255, 0, 245), (255, 0, 102), (255, 173, 0), (255, 0, 20),
               (255, 184, 184), (0, 31, 255), (0, 255, 61), (0, 71, 255),
               (255, 0, 204), (0, 255, 194), (0, 255, 82), (0, 10, 255),
               (0, 112, 255), (51, 0, 255), (0, 194, 255), (0, 122, 255),
               (0, 255, 163), (255, 153, 0), (0, 255, 10), (255, 112, 0),
               (143, 255, 0), (82, 0, 255), (163, 255, 0), (255, 235, 0),
               (8, 184, 170), (133, 0, 255), (0, 255, 92), (184, 0, 255),
               (255, 0, 31), (0, 184, 255), (0, 214, 255), (255, 0, 112),
               (92, 255, 0), (0, 224, 255), (112, 224, 255), (70, 184, 160),
               (163, 0, 255), (153, 0, 255), (71, 255, 0), (255, 0, 163),
               (255, 204, 0), (255, 0, 143), (0, 255, 235), (133, 255, 0),
               (255, 0, 235), (245, 0, 255), (255, 0, 122), (255, 245, 0),
               (10, 190, 212), (214, 255, 0), (0, 204, 255), (20, 0, 255),
               (255, 255, 0), (0, 153, 255), (0, 41, 255), (0, 255, 204),
               (41, 0, 255), (41, 255, 0), (173, 0, 255), (0, 245, 255),
               (71, 0, 255), (122, 0, 255), (0, 255, 184), (0, 92, 255),
               (184, 255, 0), (0, 133, 255), (255, 214, 0), (25, 194, 194),
               (102, 255, 0), (92, 0, 255)]


@DATASETS.register_module()
class ADE20KPanopticDataset(CocoPanopticDataset):
    METAINFO = {
        'classes':
        ('bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain',
         'chair', 'car', 'painting, picture', 'sofa', 'shelf', 'mirror',
         'armchair', 'seat', 'fence', 'desk', 'wardrobe, closet, press',
         'lamp', 'tub', 'rail', 'cushion', 'box', 'column, pillar',
         'signboard, sign', 'chest of drawers, chest, bureau, dresser',
         'counter', 'sink', 'fireplace', 'refrigerator, icebox', 'stairs',
         'case, display case, showcase, vitrine',
         'pool table, billiard table, snooker table', 'pillow',
         'screen door, screen', 'bookcase', 'coffee table',
         'toilet, can, commode, crapper, pot, potty, stool, throne', 'flower',
         'book', 'bench', 'countertop', 'stove', 'palm, palm tree',
         'kitchen island', 'computer', 'swivel chair', 'boat',
         'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
         'awning, sunshade, sunblind', 'street lamp', 'booth', 'tv',
         'airplane', 'clothes', 'pole',
         'bannister, banister, balustrade, balusters, handrail',
         'ottoman, pouf, pouffe, puff, hassock', 'bottle', 'van', 'ship',
         'fountain', 'washer, automatic washer, washing machine',
         'plaything, toy', 'stool', 'barrel, cask', 'basket, handbasket',
         'bag', 'minibike, motorbike', 'oven', 'ball', 'food, solid food',
         'step, stair', 'trade name', 'microwave', 'pot', 'animal', 'bicycle',
         'dishwasher', 'screen', 'sculpture', 'hood, exhaust hood', 'sconce',
         'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate',
         'monitor', 'bulletin board', 'radiator', 'glass, drinking glass',
         'clock', 'flag', 'wall', 'building', 'sky', 'floor', 'tree',
         'ceiling', 'road, route', 'grass', 'sidewalk, pavement',
         'earth, ground', 'mountain, mount', 'plant', 'water', 'house', 'sea',
         'rug', 'field', 'rock, stone', 'base, pedestal, stand', 'sand',
         'skyscraper', 'grandstand, covered stand', 'path', 'runway',
         'stairway, staircase', 'river', 'bridge, span', 'blind, screen',
         'hill', 'bar', 'hovel, hut, hutch, shack, shanty', 'tower',
         'dirt track', 'land, ground, soil',
         'escalator, moving staircase, moving stairway',
         'buffet, counter, sideboard',
         'poster, posting, placard, notice, bill, card', 'stage',
         'conveyer belt, conveyor belt, conveyer, conveyor, transporter',
         'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank, storage tank',
         'lake', 'blanket, cover', 'pier', 'crt screen', 'shower'),
        'thing_classes':
        ('bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain',
         'chair', 'car', 'painting, picture', 'sofa', 'shelf', 'mirror',
         'armchair', 'seat', 'fence', 'desk', 'wardrobe, closet, press',
         'lamp', 'tub', 'rail', 'cushion', 'box', 'column, pillar',
         'signboard, sign', 'chest of drawers, chest, bureau, dresser',
         'counter', 'sink', 'fireplace', 'refrigerator, icebox', 'stairs',
         'case, display case, showcase, vitrine',
         'pool table, billiard table, snooker table', 'pillow',
         'screen door, screen', 'bookcase', 'coffee table',
         'toilet, can, commode, crapper, pot, potty, stool, throne', 'flower',
         'book', 'bench', 'countertop', 'stove', 'palm, palm tree',
         'kitchen island', 'computer', 'swivel chair', 'boat',
         'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
         'awning, sunshade, sunblind', 'street lamp', 'booth', 'tv',
         'airplane', 'clothes', 'pole',
         'bannister, banister, balustrade, balusters, handrail',
         'ottoman, pouf, pouffe, puff, hassock', 'bottle', 'van', 'ship',
         'fountain', 'washer, automatic washer, washing machine',
         'plaything, toy', 'stool', 'barrel, cask', 'basket, handbasket',
         'bag', 'minibike, motorbike', 'oven', 'ball', 'food, solid food',
         'step, stair', 'trade name', 'microwave', 'pot', 'animal', 'bicycle',
         'dishwasher', 'screen', 'sculpture', 'hood, exhaust hood', 'sconce',
         'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate',
         'monitor', 'bulletin board', 'radiator', 'glass, drinking glass',
         'clock', 'flag'),
        'stuff_classes':
        ('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road, route',
         'grass', 'sidewalk, pavement', 'earth, ground', 'mountain, mount',
         'plant', 'water', 'house', 'sea', 'rug', 'field', 'rock, stone',
         'base, pedestal, stand', 'sand', 'skyscraper',
         'grandstand, covered stand', 'path', 'runway', 'stairway, staircase',
         'river', 'bridge, span', 'blind, screen', 'hill', 'bar',
         'hovel, hut, hutch, shack, shanty', 'tower', 'dirt track',
         'land, ground, soil', 'escalator, moving staircase, moving stairway',
         'buffet, counter, sideboard',
         'poster, posting, placard, notice, bill, card', 'stage',
         'conveyer belt, conveyor belt, conveyer, conveyor, transporter',
         'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank, storage tank',
         'lake', 'blanket, cover', 'pier', 'crt screen', 'shower'),
        'palette':
        ADE_PALETTE
    }


@DATASETS.register_module()
class ADE20KInstanceDataset(CocoDataset):
    METAINFO = {
        'classes':
        ('bed', 'windowpane', 'cabinet', 'person', 'door', 'table', 'curtain',
         'chair', 'car', 'painting', 'sofa', 'shelf', 'mirror', 'armchair',
         'seat', 'fence', 'desk', 'wardrobe', 'lamp', 'bathtub', 'railing',
         'cushion', 'box', 'column', 'signboard', 'chest of drawers',
         'counter', 'sink', 'fireplace', 'refrigerator', 'stairs', 'case',
         'pool table', 'pillow', 'screen door', 'bookcase', 'coffee table',
         'toilet', 'flower', 'book', 'bench', 'countertop', 'stove', 'palm',
         'kitchen island', 'computer', 'swivel chair', 'boat',
         'arcade machine', 'bus', 'towel', 'light', 'truck', 'chandelier',
         'awning', 'streetlight', 'booth', 'television receiver', 'airplane',
         'apparel', 'pole', 'bannister', 'ottoman', 'bottle', 'van', 'ship',
         'fountain', 'washer', 'plaything', 'stool', 'barrel', 'basket', 'bag',
         'minibike', 'oven', 'ball', 'food', 'step', 'trade name', 'microwave',
         'pot', 'animal', 'bicycle', 'dishwasher', 'screen', 'sculpture',
         'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan',
         'plate', 'monitor', 'bulletin board', 'radiator', 'glass', 'clock',
         'flag'),
        'palette': [(204, 5, 255), (230, 230, 230), (224, 5, 255),
                    (150, 5, 61), (8, 255, 51), (255, 6, 82), (255, 51, 7),
                    (204, 70, 3), (0, 102, 200), (255, 6, 51), (11, 102, 255),
                    (255, 7, 71), (220, 220, 220), (8, 255, 214),
                    (7, 255, 224), (255, 184, 6), (10, 255, 71), (7, 255, 255),
                    (224, 255, 8), (102, 8, 255), (255, 61, 6), (255, 194, 7),
                    (0, 255, 20), (255, 8, 41), (255, 5, 153), (6, 51, 255),
                    (235, 12, 255), (0, 163, 255), (250, 10, 15), (20, 255, 0),
                    (255, 224, 0), (0, 0, 255), (255, 71, 0), (0, 235, 255),
                    (0, 173, 255), (0, 255, 245), (0, 255, 112), (0, 255, 133),
                    (255, 0, 0), (255, 163, 0), (194, 255, 0), (0, 143, 255),
                    (51, 255, 0), (0, 82, 255), (0, 255, 41), (0, 255, 173),
                    (10, 0, 255), (173, 255, 0), (255, 92, 0), (255, 0, 245),
                    (255, 0, 102), (255, 173, 0), (255, 0, 20), (0, 31, 255),
                    (0, 255, 61), (0, 71, 255), (255, 0, 204), (0, 255, 194),
                    (0, 255, 82), (0, 112, 255), (51, 0, 255), (0, 122, 255),
                    (255, 153, 0), (0, 255, 10), (163, 255, 0), (255, 235, 0),
                    (8, 184, 170), (184, 0, 255), (255, 0, 31), (0, 214, 255),
                    (255, 0, 112), (92, 255, 0), (70, 184, 160), (163, 0, 255),
                    (71, 255, 0), (255, 0, 163), (255, 204, 0), (255, 0, 143),
                    (133, 255, 0), (255, 0, 235), (245, 0, 255), (255, 0, 122),
                    (255, 245, 0), (214, 255, 0), (0, 204, 255), (255, 255, 0),
                    (0, 153, 255), (0, 41, 255), (0, 255, 204), (41, 0, 255),
                    (41, 255, 0), (173, 0, 255), (0, 245, 255), (0, 255, 184),
                    (0, 92, 255), (184, 255, 0), (255, 214, 0), (25, 194, 194),
                    (102, 255, 0), (92, 0, 255)],
    }


@DATASETS.register_module()
class ADE20KSegDataset(BaseSegDataset):
    """ADE20K dataset.

    In segmentation map annotation for ADE20K, 0 stands for background, which
    is not included in 150 categories. The ``img_suffix`` is fixed to '.jpg',
    and ``seg_map_suffix`` is fixed to '.png'.
    """
    METAINFO = dict(
        classes=('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
                 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk',
                 'person', 'earth', 'door', 'table', 'mountain', 'plant',
                 'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
                 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
                 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
                 'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
                 'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
                 'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
                 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
                 'screen door', 'stairway', 'river', 'bridge', 'bookcase',
                 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
                 'bench', 'countertop', 'stove', 'palm', 'kitchen island',
                 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
                 'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
                 'chandelier', 'awning', 'streetlight', 'booth',
                 'television receiver', 'airplane', 'dirt track', 'apparel',
                 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
                 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
                 'conveyer belt', 'canopy', 'washer', 'plaything',
                 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
                 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
                 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
                 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
                 'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
                 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
                 'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
                 'clock', 'flag'),
        palette=ADE_PALETTE)

    def __init__(self,
                 img_suffix='.jpg',
                 seg_map_suffix='.png',
                 return_classes=False,
                 **kwargs) -> None:
        self.return_classes = return_classes
        super().__init__(
            img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs)

    def load_data_list(self) -> List[dict]:
        """Load annotation from directory or annotation file.

        Returns:
            List[dict]: All data info of dataset.
        """
        data_list = []
        img_dir = self.data_prefix.get('img_path', None)
        ann_dir = self.data_prefix.get('seg_map_path', None)
        for img in fileio.list_dir_or_file(
                dir_path=img_dir,
                list_dir=False,
                suffix=self.img_suffix,
                recursive=True,
                backend_args=self.backend_args):
            data_info = dict(img_path=osp.join(img_dir, img))
            if ann_dir is not None:
                seg_map = img.replace(self.img_suffix, self.seg_map_suffix)
                data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
            data_info['label_map'] = self.label_map
            if self.return_classes:
                data_info['text'] = list(self._metainfo['classes'])
            data_list.append(data_info)
        return data_list