File size: 7,188 Bytes
583456e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

from collections import OrderedDict
import torch
import torch.nn as nn
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(
            planes, planes, 3, padding=1 * dilation, bias=False, dilation=dilation
        )
        self.bn2 = nn.BatchNorm2d(planes)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(
                OrderedDict(
                    [
                        ("-1", nn.AvgPool2d(stride)),
                        (
                            "0",
                            nn.Conv2d(
                                inplanes,
                                planes * self.expansion,
                                1,
                                stride=1,
                                bias=False,
                            ),
                        ),
                        ("1", nn.BatchNorm2d(planes * self.expansion)),
                    ]
                )
            )

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu(self.bn1(self.conv1(x)))
        out = self.relu(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, width=64, strides=[2, 1, 2, 2, 2], multi_grid=[1, 1, 1]):
        super().__init__()

        # the 3-layer stem
        self.conv1 = nn.Conv2d(
            3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(width // 2)
        self.conv2 = nn.Conv2d(
            width // 2, width // 2, kernel_size=3, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(width // 2)
        self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(width)
        self.avgpool = nn.AvgPool2d(strides[0]) if strides[0] > 1 else nn.Identity()
        self.relu = nn.ReLU(inplace=True)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0], stride=strides[1])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=strides[2])
        self.layer3 = self._make_layer(width * 4, layers[2], stride=strides[3])
        self.layer4 = self._make_layer(
            width * 8, layers[3], stride=strides[4], dilations=multi_grid
        )
        self.num_features = [width * 4, width * 8, width * 16, width * 32]

    def _make_layer(self, planes, blocks, stride=1, dilations=None):
        if dilations is None:
            dilations = [1] * blocks
        layers = [Bottleneck(self._inplanes, planes, stride, dilation=dilations[0])]
        self._inplanes = planes * Bottleneck.expansion

        for i in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes, dilation=dilations[i]))

        return nn.Sequential(*layers)

    def forward(self, x):
        def stem(x):
            for conv, bn in [
                (self.conv1, self.bn1),
                (self.conv2, self.bn2),
                (self.conv3, self.bn3),
            ]:
                x = self.relu(bn(conv(x)))
            x = self.avgpool(x)
            return x

        output = {}
        x = x.type(self.conv1.weight.dtype)
        x = stem(x)  # 1/4,1/4
        x = self.layer1(x)
        output["res2"] = x
        x = self.layer2(x)  # 1/8,1/8
        output["res3"] = x
        x = self.layer3(x)  # 1/16,1/16
        output["res4"] = x
        x = self.layer4(x)  # 1/32,1/32
        output["res5"] = x
        return output


@BACKBONE_REGISTRY.register()
class D2ModifiedResNet(ModifiedResNet, Backbone):
    def __init__(self, cfg, input_shape):
        depth = cfg.MODEL.RESNETS.DEPTH
        num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
        width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
        bottleneck_channels = num_groups * width_per_group
        num_blocks_per_stage = {
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
            152: [3, 8, 36, 3],
        }[depth]
        strides = [2, 1, 2, 2, 2]
        multi_grid = cfg.MODEL.RESNETS.RES5_MULTI_GRID
        if cfg.MODEL.RESNETS.STEM_TYPE == "deeplab":
            strides = [1, 1, 2, 2, 2]
        super().__init__(
            num_blocks_per_stage,
            bottleneck_channels,
            strides=strides,
            multi_grid=multi_grid,
        )
        self._out_features = cfg.MODEL.RESNETS.OUT_FEATURES

        self._out_feature_strides = {
            "res2": 4,
            "res3": 8,
            "res4": 16,
            "res5": 32,
        }
        self._out_feature_channels = {
            "res2": self.num_features[0],
            "res3": self.num_features[1],
            "res4": self.num_features[2],
            "res5": self.num_features[3],
        }

    def forward(self, x):
        """
        Args:
            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
        Returns:
            dict[str->Tensor]: names and the corresponding features
        """
        outputs = {}
        y = super().forward(x)
        for k in y.keys():
            if k in self._out_features:
                outputs[k] = y[k]
        return outputs

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name],
                stride=self._out_feature_strides[name],
            )
            for name in self._out_features
        }

    @property
    def size_divisibility(self):
        return 32