Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,283 Bytes
6ec60d5 5238467 6ec60d5 5238467 6457900 8e10a53 6ec60d5 5238467 6ec60d5 1897b6f 6ec60d5 1897b6f 5238467 6ec60d5 6457900 6ec60d5 6457900 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 6457900 6ec60d5 6457900 6ec60d5 5238467 6ec60d5 5238467 6ec60d5 4cf6900 6ec60d5 6457900 5238467 6457900 6ec60d5 6457900 6ec60d5 6457900 5238467 6ec60d5 4cf6900 6ec60d5 5238467 6ec60d5 8e10a53 925b7f8 8e10a53 6457900 8e10a53 4cf6900 8e10a53 6ec60d5 8e10a53 6ec60d5 8e10a53 23fe483 8e10a53 4cf6900 6457900 23fe483 8e10a53 23fe483 8e10a53 23fe483 8e10a53 5238467 6457900 23fe483 8e10a53 6ec60d5 8e10a53 6ec60d5 8e10a53 5238467 8e10a53 5238467 8e10a53 1897b6f 8e10a53 5238467 6ec60d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.
import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen
MODEL = None # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 8
BATCHED_DURATION = 15
INTERRUPTING = False
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomitting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version='melody'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = MusicGen.get_pretrained(version)
def _do_predictions(texts, melodies, duration, **gen_kwargs):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., :int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
if any(m is not None for m in processed_melodies):
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=True
)
else:
outputs = MODEL.generate(texts, progress=True)
outputs = outputs.detach().cpu().float()
out_files = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_files.append(pool.submit(make_waveform, file.name))
res = [out_file.result() for out_file in out_files]
print("batch finished", len(texts), time.time() - be)
return res
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('melody')
res = _do_predictions(texts, melodies, BATCHED_DURATION)
return [res]
def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
global INTERRUPTING
INTERRUPTING = False
topk = int(topk)
load_model(model)
def _progress(generated, to_generate):
progress((generated, to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
outs = _do_predictions(
[text], [melody], duration,
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
return outs[0]
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MusicGen
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Column():
output = gr.Video(label="Generated Music")
submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
gr.Examples(
fn=predict_full,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody"
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"melody"
],
[
"90s rock song with electric guitar and heavy drums",
None,
"medium"
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody"
],
[
"lofi slow bpm electro chill with organic samples",
None,
"medium",
],
],
inputs=[text, melody, model],
outputs=[output]
)
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
The model can generate up to 30 seconds of audio in one pass. It is now possible
to extend the generation by feeding back the end of the previous chunk of audio.
This can take a long time, and the model might lose consistency. The model might also
decide at arbitrary positions that the song ends.
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds
is kept with the previously generated chunk, and 18 "new" seconds are generated each time.
We present 4 model variations:
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
2. Small -- a 300M transformer decoder conditioned on text only.
3. Medium -- a 1.5B transformer decoder conditioned on text only.
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
When using `melody`, ou can optionaly provide a reference audio from
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
def ui_batched(launch_kwargs):
with gr.Blocks() as demo:
gr.Markdown(
"""
# MusicGen
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
<br/>
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
for longer sequences, more control and no queue.</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", lines=2, interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Generate")
with gr.Column():
output = gr.Video(label="Generated Music")
submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
gr.Examples(
fn=predict_batched,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
],
[
"90s rock song with electric guitar and heavy drums",
None,
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
"./assets/bach.mp3",
],
[
"lofi slow bpm electro chill with organic samples",
None,
],
],
inputs=[text, melody],
outputs=[output]
)
gr.Markdown("""
### More details
The model will generate 12 seconds of audio based on the description you provided.
You can optionaly provide a reference audio from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
All samples are generated with the `melody` model.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
""")
demo.queue(max_size=8 * 4).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
# Show the interface
if IS_BATCHED:
ui_batched(launch_kwargs)
else:
ui_full(launch_kwargs)
|