Spaces:
Running
on
A10G
Running
on
A10G
File size: 35,147 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import time
import typing as tp
import warnings
import flashy
import math
import omegaconf
import torch
from torch.nn import functional as F
from . import base, builders
from .compression import CompressionSolver
from .. import metrics as eval_metrics
from .. import models
from ..data.audio_dataset import AudioDataset
from ..data.music_dataset import MusicDataset, MusicInfo, AudioInfo
from ..data.audio_utils import normalize_audio
from ..modules.conditioners import JointEmbedCondition, SegmentWithAttributes, WavCondition
from ..utils.cache import CachedBatchWriter, CachedBatchLoader
from ..utils.samples.manager import SampleManager
from ..utils.utils import get_dataset_from_loader, is_jsonable, warn_once
class MusicGenSolver(base.StandardSolver):
"""Solver for MusicGen training task.
Used in: https://arxiv.org/abs/2306.05284
"""
DATASET_TYPE: builders.DatasetType = builders.DatasetType.MUSIC
def __init__(self, cfg: omegaconf.DictConfig):
super().__init__(cfg)
# easier access to sampling parameters
self.generation_params = {
'use_sampling': self.cfg.generate.lm.use_sampling,
'temp': self.cfg.generate.lm.temp,
'top_k': self.cfg.generate.lm.top_k,
'top_p': self.cfg.generate.lm.top_p,
}
self._best_metric_name: tp.Optional[str] = 'ce'
self._cached_batch_writer = None
self._cached_batch_loader = None
if cfg.cache.path:
if cfg.cache.write:
self._cached_batch_writer = CachedBatchWriter(Path(cfg.cache.path))
if self.cfg.cache.write_num_shards:
self.logger.warning("Multiple shard cache, best_metric_name will be set to None.")
self._best_metric_name = None
else:
self._cached_batch_loader = CachedBatchLoader(
Path(cfg.cache.path), cfg.dataset.batch_size, cfg.dataset.num_workers,
min_length=self.cfg.optim.updates_per_epoch or 1)
self.dataloaders['original_train'] = self.dataloaders['train']
self.dataloaders['train'] = self._cached_batch_loader # type: ignore
@staticmethod
def get_eval_solver_from_sig(sig: str, dtype: tp.Optional[str] = None,
device: tp.Optional[str] = None, autocast: bool = True,
batch_size: tp.Optional[int] = None,
override_cfg: tp.Optional[tp.Union[dict, omegaconf.DictConfig]] = None,
**kwargs):
"""Mostly a convenience function around magma.train.get_solver_from_sig,
populating all the proper param, deactivating EMA, FSDP, loading the best state,
basically all you need to get a solver ready to "play" with in single GPU mode
and with minimal memory overhead.
Args:
sig (str): signature to load.
dtype (str or None): potential dtype, as a string, i.e. 'float16'.
device (str or None): potential device, as a string, i.e. 'cuda'.
override_cfg (dict or omegaconf.DictConfig or None): potential device, as a string, i.e. 'cuda'.
"""
from audiocraft import train
our_override_cfg: tp.Dict[str, tp.Any] = {'optim': {'ema': {'use': False}}}
our_override_cfg['autocast'] = autocast
if dtype is not None:
our_override_cfg['dtype'] = dtype
if device is not None:
our_override_cfg['device'] = device
if batch_size is not None:
our_override_cfg['dataset'] = {'batch_size': batch_size}
if override_cfg is None:
override_cfg = {}
override_cfg = omegaconf.OmegaConf.merge(
omegaconf.DictConfig(override_cfg), omegaconf.DictConfig(our_override_cfg)) # type: ignore
solver = train.get_solver_from_sig(
sig, override_cfg=override_cfg,
load_best=True, disable_fsdp=True,
ignore_state_keys=['optimizer', 'ema'], **kwargs)
solver.model.eval()
return solver
def get_formatter(self, stage_name: str) -> flashy.Formatter:
return flashy.Formatter({
'lr': '.2E',
'ce': '.3f',
'ppl': '.3f',
'grad_norm': '.3E',
}, exclude_keys=['ce_q*', 'ppl_q*'])
@property
def best_metric_name(self) -> tp.Optional[str]:
return self._best_metric_name
def build_model(self) -> None:
"""Instantiate models and optimizer."""
# we can potentially not use all quantizers with which the EnCodec model was trained
# (e.g. we trained the model with quantizers dropout)
self.compression_model = CompressionSolver.wrapped_model_from_checkpoint(
self.cfg, self.cfg.compression_model_checkpoint, device=self.device)
assert self.compression_model.sample_rate == self.cfg.sample_rate, (
f"Compression model sample rate is {self.compression_model.sample_rate} but "
f"Solver sample rate is {self.cfg.sample_rate}."
)
# ensure we have matching configuration between LM and compression model
assert self.cfg.transformer_lm.card == self.compression_model.cardinality, (
"Cardinalities of the LM and compression model don't match: ",
f"LM cardinality is {self.cfg.transformer_lm.card} vs ",
f"compression model cardinality is {self.compression_model.cardinality}"
)
assert self.cfg.transformer_lm.n_q == self.compression_model.num_codebooks, (
"Numbers of codebooks of the LM and compression models don't match: ",
f"LM number of codebooks is {self.cfg.transformer_lm.n_q} vs ",
f"compression model numer of codebooks is {self.compression_model.num_codebooks}"
)
self.logger.info("Compression model has %d codebooks with %d cardinality, and a framerate of %d",
self.compression_model.num_codebooks, self.compression_model.cardinality,
self.compression_model.frame_rate)
# instantiate LM model
self.model: models.LMModel = models.builders.get_lm_model(self.cfg).to(self.device)
if self.cfg.fsdp.use:
assert not self.cfg.autocast, "Cannot use autocast with fsdp"
self.model = self.wrap_with_fsdp(self.model)
self.register_ema('model')
# initialize optimization
self.optimizer = builders.get_optimizer(builders.get_optim_parameter_groups(self.model), self.cfg.optim)
self.lr_scheduler = builders.get_lr_scheduler(self.optimizer, self.cfg.schedule, self.total_updates)
self.register_stateful('compression_model', 'model', 'optimizer', 'lr_scheduler')
self.register_best_state('model')
self.autocast_dtype = {
'float16': torch.float16, 'bfloat16': torch.bfloat16
}[self.cfg.autocast_dtype]
self.scaler: tp.Optional[torch.cuda.amp.GradScaler] = None
if self.cfg.fsdp.use:
need_scaler = self.cfg.fsdp.param_dtype == 'float16'
else:
need_scaler = self.cfg.autocast and self.autocast_dtype is torch.float16
if need_scaler:
if self.cfg.fsdp.use:
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
self.scaler = ShardedGradScaler() # type: ignore
else:
self.scaler = torch.cuda.amp.GradScaler()
self.register_stateful('scaler')
def build_dataloaders(self) -> None:
"""Instantiate audio dataloaders for each stage."""
self.dataloaders = builders.get_audio_datasets(self.cfg, dataset_type=self.DATASET_TYPE)
def show(self) -> None:
"""Show the compression model and LM model."""
self.logger.info("Compression model:")
self.log_model_summary(self.compression_model)
self.logger.info("LM model:")
self.log_model_summary(self.model)
def load_state_dict(self, state: dict) -> None:
if 'condition_provider' in state:
model_state = state['model']
condition_provider_state = state.pop('condition_provider')
prefix = 'condition_provider.'
for key, value in condition_provider_state.items():
key = prefix + key
assert key not in model_state
model_state[key] = value
super().load_state_dict(state)
def load_from_pretrained(self, name: str):
# TODO: support native HF versions of MusicGen.
lm_pkg = models.loaders.load_lm_model_ckpt(name)
state: dict = {
'best_state': {
'model': lm_pkg['best_state'],
},
}
return state
def _compute_cross_entropy(
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
"""Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed per codebook to provide codebook-level cross entropy.
Valid timesteps for each of the codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
Returns:
ce (torch.Tensor): Cross entropy averaged over the codebooks
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
"""
B, K, T = targets.shape
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
ce_per_codebook: tp.List[torch.Tensor] = []
for k in range(K):
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
ce_targets = targets_k[mask_k]
ce_logits = logits_k[mask_k]
q_ce = F.cross_entropy(ce_logits, ce_targets)
ce += q_ce
ce_per_codebook.append(q_ce.detach())
# average cross entropy across codebooks
ce = ce / K
return ce, ce_per_codebook
def _prepare_tokens_and_attributes(
self, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]],
check_synchronization_points: bool = False
) -> tp.Tuple[dict, torch.Tensor, torch.Tensor]:
"""Prepare input batchs for language model training.
Args:
batch (tuple[torch.Tensor, list[SegmentWithAttributes]]): Input batch with audio tensor of shape [B, C, T]
and corresponding metadata as SegmentWithAttributes (with B items).
check_synchronization_points (bool): Whether to check for synchronization points slowing down training.
Returns:
Condition tensors (dict[str, any]): Preprocessed condition attributes.
Tokens (torch.Tensor): Audio tokens from compression model, of shape [B, K, T_s],
with B the batch size, K the number of codebooks, T_s the token timesteps.
Padding mask (torch.Tensor): Mask with valid positions in the tokens tensor, of shape [B, K, T_s].
"""
if self.model.training:
warnings.warn(
"Up to version 1.0.1, the _prepare_tokens_and_attributes was evaluated with `torch.no_grad()`. "
"This is inconsistent with how model were trained in the MusicGen paper. We removed the "
"`torch.no_grad()` in version 1.1.0. Small changes to the final performance are expected. "
"Really sorry about that.")
if self._cached_batch_loader is None or self.current_stage != "train":
audio, infos = batch
audio = audio.to(self.device)
audio_tokens = None
assert audio.size(0) == len(infos), (
f"Mismatch between number of items in audio batch ({audio.size(0)})",
f" and in metadata ({len(infos)})"
)
else:
audio = None
# In that case the batch will be a tuple coming from the _cached_batch_writer bit below.
infos, = batch # type: ignore
assert all([isinstance(info, AudioInfo) for info in infos])
assert all([info.audio_tokens is not None for info in infos]) # type: ignore
audio_tokens = torch.stack([info.audio_tokens for info in infos]).to(self.device) # type: ignore
audio_tokens = audio_tokens.long()
for info in infos:
if isinstance(info, MusicInfo):
# Careful here, if you want to use this condition_wav (e.b. chroma conditioning),
# then you must be using the chroma cache! otherwise the code will try
# to use this segment and fail (by that I mean you will see NaN everywhere).
info.self_wav = WavCondition(
torch.full([1, info.channels, info.total_frames], float('NaN')),
length=torch.tensor([info.n_frames]),
sample_rate=[info.sample_rate],
path=[info.meta.path],
seek_time=[info.seek_time])
dataset = get_dataset_from_loader(self.dataloaders['original_train'])
assert isinstance(dataset, MusicDataset), type(dataset)
if dataset.paraphraser is not None and info.description is not None:
# Hackingly reapplying paraphraser when using cache.
info.description = dataset.paraphraser.sample_paraphrase(
info.meta.path, info.description)
# prepare attributes
attributes = [info.to_condition_attributes() for info in infos]
attributes = self.model.cfg_dropout(attributes)
attributes = self.model.att_dropout(attributes)
tokenized = self.model.condition_provider.tokenize(attributes)
# Now we should be synchronization free.
if self.device == "cuda" and check_synchronization_points:
torch.cuda.set_sync_debug_mode("warn")
if audio_tokens is None:
with torch.no_grad():
audio_tokens, scale = self.compression_model.encode(audio)
assert scale is None, "Scaled compression model not supported with LM."
with self.autocast:
condition_tensors = self.model.condition_provider(tokenized)
# create a padding mask to hold valid vs invalid positions
padding_mask = torch.ones_like(audio_tokens, dtype=torch.bool, device=audio_tokens.device)
# replace encodec tokens from padded audio with special_token_id
if self.cfg.tokens.padding_with_special_token:
audio_tokens = audio_tokens.clone()
padding_mask = padding_mask.clone()
token_sample_rate = self.compression_model.frame_rate
B, K, T_s = audio_tokens.shape
for i in range(B):
n_samples = infos[i].n_frames
audio_sample_rate = infos[i].sample_rate
# take the last token generated from actual audio frames (non-padded audio)
valid_tokens = math.floor(float(n_samples) / audio_sample_rate * token_sample_rate)
audio_tokens[i, :, valid_tokens:] = self.model.special_token_id
padding_mask[i, :, valid_tokens:] = 0
if self.device == "cuda" and check_synchronization_points:
torch.cuda.set_sync_debug_mode("default")
if self._cached_batch_writer is not None and self.current_stage == 'train':
assert self._cached_batch_loader is None
assert audio_tokens is not None
for info, one_audio_tokens in zip(infos, audio_tokens):
assert isinstance(info, AudioInfo)
if isinstance(info, MusicInfo):
assert not info.joint_embed, "joint_embed and cache not supported yet."
info.self_wav = None
assert one_audio_tokens.max() < 2**15, one_audio_tokens.max().item()
info.audio_tokens = one_audio_tokens.short().cpu()
self._cached_batch_writer.save(infos)
return condition_tensors, audio_tokens, padding_mask
def run_step(self, idx: int, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]], metrics: dict) -> dict:
"""Perform one training or valid step on a given batch."""
check_synchronization_points = idx == 1 and self.device == 'cuda'
condition_tensors, audio_tokens, padding_mask = self._prepare_tokens_and_attributes(
batch, check_synchronization_points)
self.deadlock_detect.update('tokens_and_conditions')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('warn')
with self.autocast:
model_output = self.model.compute_predictions(audio_tokens, [], condition_tensors) # type: ignore
logits = model_output.logits
mask = padding_mask & model_output.mask
ce, ce_per_codebook = self._compute_cross_entropy(logits, audio_tokens, mask)
loss = ce
self.deadlock_detect.update('loss')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('default')
if self.is_training:
metrics['lr'] = self.optimizer.param_groups[0]['lr']
if self.scaler is not None:
loss = self.scaler.scale(loss)
self.deadlock_detect.update('scale')
if self.cfg.fsdp.use:
loss.backward()
flashy.distrib.average_tensors(self.model.buffers())
elif self.cfg.optim.eager_sync:
with flashy.distrib.eager_sync_model(self.model):
loss.backward()
else:
# this should always be slower but can be useful
# for weird use cases like multiple backwards.
loss.backward()
flashy.distrib.sync_model(self.model)
self.deadlock_detect.update('backward')
if self.scaler is not None:
self.scaler.unscale_(self.optimizer)
if self.cfg.optim.max_norm:
if self.cfg.fsdp.use:
metrics['grad_norm'] = self.model.clip_grad_norm_(self.cfg.optim.max_norm) # type: ignore
else:
metrics['grad_norm'] = torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.optim.max_norm
)
if self.scaler is None:
self.optimizer.step()
else:
self.scaler.step(self.optimizer)
self.scaler.update()
if self.lr_scheduler:
self.lr_scheduler.step()
self.optimizer.zero_grad()
self.deadlock_detect.update('optim')
if self.scaler is not None:
scale = self.scaler.get_scale()
metrics['grad_scale'] = scale
if not loss.isfinite().all():
raise RuntimeError("Model probably diverged.")
metrics['ce'] = ce
metrics['ppl'] = torch.exp(ce)
for k, ce_q in enumerate(ce_per_codebook):
metrics[f'ce_q{k + 1}'] = ce_q
metrics[f'ppl_q{k + 1}'] = torch.exp(ce_q)
return metrics
@torch.no_grad()
def run_generate_step(self, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]],
gen_duration: float, prompt_duration: tp.Optional[float] = None,
remove_prompt: bool = False,
**generation_params) -> dict:
"""Run generate step on a batch of optional audio tensor and corresponding attributes.
Args:
batch (tuple[torch.Tensor, list[SegmentWithAttributes]]):
use_prompt (bool): Whether to do audio continuation generation with prompt from audio batch.
gen_duration (float): Target audio duration for the generation.
prompt_duration (float, optional): Duration for the audio prompt to use for continuation.
remove_prompt (bool, optional): Whether to remove the prompt from the generated audio.
generation_params: Additional generation parameters.
Returns:
gen_outputs (dict): Generation outputs, consisting in audio, audio tokens from both the generation
and the prompt along with additional information.
"""
bench_start = time.time()
audio, meta = batch
assert audio.size(0) == len(meta), (
f"Mismatch between number of items in audio batch ({audio.size(0)})",
f" and in metadata ({len(meta)})"
)
# prepare attributes
attributes = [x.to_condition_attributes() for x in meta]
# TODO: Add dropout for chroma?
# prepare audio prompt
if prompt_duration is None:
prompt_audio = None
else:
assert prompt_duration < gen_duration, "Prompt duration must be lower than target generation duration"
prompt_audio_frames = int(prompt_duration * self.compression_model.sample_rate)
prompt_audio = audio[..., :prompt_audio_frames]
# get audio tokens from compression model
if prompt_audio is None or prompt_audio.nelement() == 0:
num_samples = len(attributes)
prompt_tokens = None
else:
num_samples = None
prompt_audio = prompt_audio.to(self.device)
prompt_tokens, scale = self.compression_model.encode(prompt_audio)
assert scale is None, "Compression model in MusicGen should not require rescaling."
# generate by sampling from the LM
with self.autocast:
total_gen_len = math.ceil(gen_duration * self.compression_model.frame_rate)
gen_tokens = self.model.generate(
prompt_tokens, attributes, max_gen_len=total_gen_len,
num_samples=num_samples, **self.generation_params)
# generate audio from tokens
assert gen_tokens.dim() == 3
gen_audio = self.compression_model.decode(gen_tokens, None)
bench_end = time.time()
gen_outputs = {
'rtf': (bench_end - bench_start) / gen_duration,
'ref_audio': audio,
'gen_audio': gen_audio,
'gen_tokens': gen_tokens,
'prompt_audio': prompt_audio,
'prompt_tokens': prompt_tokens,
}
return gen_outputs
def generate_audio(self) -> dict:
"""Audio generation stage."""
generate_stage_name = f'{self.current_stage}'
sample_manager = SampleManager(self.xp)
self.logger.info(f"Generating samples in {sample_manager.base_folder}")
loader = self.dataloaders['generate']
updates = len(loader)
lp = self.log_progress(generate_stage_name, loader, total=updates, updates=self.log_updates)
dataset = get_dataset_from_loader(loader)
dataset_duration = dataset.segment_duration
assert dataset_duration is not None
assert isinstance(dataset, AudioDataset)
target_duration = self.cfg.generate.lm.gen_duration
prompt_duration = self.cfg.generate.lm.prompt_duration
if target_duration is None:
target_duration = dataset_duration
if prompt_duration is None:
prompt_duration = dataset_duration / 4
assert prompt_duration < dataset_duration, (
f"Specified prompt duration ({prompt_duration}s) is longer",
f" than reference audio duration ({dataset_duration}s)"
)
def get_hydrated_conditions(meta: tp.List[SegmentWithAttributes]):
hydrated_conditions = []
for sample in [x.to_condition_attributes() for x in meta]:
cond_dict = {}
for cond_type in sample.__annotations__.keys():
for cond_key, cond_val in getattr(sample, cond_type).items():
if cond_key not in self.model.condition_provider.conditioners.keys():
continue
if is_jsonable(cond_val):
cond_dict[cond_key] = cond_val
elif isinstance(cond_val, WavCondition):
cond_dict[cond_key] = cond_val.path
elif isinstance(cond_val, JointEmbedCondition):
cond_dict[cond_key] = cond_val.text # only support text at inference for now
else:
# if we reached this point, it is not clear how to log the condition
# so we just log the type.
cond_dict[cond_key] = str(type(cond_val))
continue
hydrated_conditions.append(cond_dict)
return hydrated_conditions
metrics: dict = {}
average = flashy.averager()
for batch in lp:
audio, meta = batch
# metadata for sample manager
hydrated_conditions = get_hydrated_conditions(meta)
sample_generation_params = {
**{f'classifier_free_guidance_{k}': v for k, v in self.cfg.classifier_free_guidance.items()},
**self.generation_params
}
if self.cfg.generate.lm.unprompted_samples:
if self.cfg.generate.lm.gen_gt_samples:
# get the ground truth instead of generation
self.logger.warn(
"Use ground truth instead of audio generation as generate.lm.gen_gt_samples=true")
gen_unprompted_audio = audio
rtf = 1.
else:
gen_unprompted_outputs = self.run_generate_step(
batch, gen_duration=target_duration, prompt_duration=None,
**self.generation_params)
gen_unprompted_audio = gen_unprompted_outputs['gen_audio'].cpu()
rtf = gen_unprompted_outputs['rtf']
sample_manager.add_samples(
gen_unprompted_audio, self.epoch, hydrated_conditions,
ground_truth_wavs=audio, generation_args=sample_generation_params)
if self.cfg.generate.lm.prompted_samples:
gen_outputs = self.run_generate_step(
batch, gen_duration=target_duration, prompt_duration=prompt_duration,
**self.generation_params)
gen_audio = gen_outputs['gen_audio'].cpu()
prompt_audio = gen_outputs['prompt_audio'].cpu()
sample_manager.add_samples(
gen_audio, self.epoch, hydrated_conditions,
prompt_wavs=prompt_audio, ground_truth_wavs=audio,
generation_args=sample_generation_params)
metrics['rtf'] = rtf
metrics = average(metrics)
flashy.distrib.barrier()
return metrics
def generate(self) -> dict:
"""Generate stage."""
self.model.eval()
with torch.no_grad():
return self.generate_audio()
def run_epoch(self):
if self.cfg.cache.write:
if ((self.epoch - 1) % self.cfg.cache.write_num_shards) != self.cfg.cache.write_shard:
return
super().run_epoch()
def train(self):
"""Train stage.
"""
if self._cached_batch_writer is not None:
self._cached_batch_writer.start_epoch(self.epoch)
if self._cached_batch_loader is None:
dataset = get_dataset_from_loader(self.dataloaders['train'])
assert isinstance(dataset, AudioDataset)
dataset.current_epoch = self.epoch
else:
self._cached_batch_loader.start_epoch(self.epoch)
return super().train()
def evaluate_audio_generation(self) -> dict:
"""Evaluate audio generation with off-the-shelf metrics."""
evaluate_stage_name = f'{self.current_stage}_generation'
# instantiate evaluation metrics, if at least one metric is defined, run audio generation evaluation
fad: tp.Optional[eval_metrics.FrechetAudioDistanceMetric] = None
kldiv: tp.Optional[eval_metrics.KLDivergenceMetric] = None
text_consistency: tp.Optional[eval_metrics.TextConsistencyMetric] = None
chroma_cosine: tp.Optional[eval_metrics.ChromaCosineSimilarityMetric] = None
should_run_eval = False
eval_chroma_wavs: tp.Optional[torch.Tensor] = None
if self.cfg.evaluate.metrics.fad:
fad = builders.get_fad(self.cfg.metrics.fad).to(self.device)
should_run_eval = True
if self.cfg.evaluate.metrics.kld:
kldiv = builders.get_kldiv(self.cfg.metrics.kld).to(self.device)
should_run_eval = True
if self.cfg.evaluate.metrics.text_consistency:
text_consistency = builders.get_text_consistency(self.cfg.metrics.text_consistency).to(self.device)
should_run_eval = True
if self.cfg.evaluate.metrics.chroma_cosine:
chroma_cosine = builders.get_chroma_cosine_similarity(self.cfg.metrics.chroma_cosine).to(self.device)
# if we have predefind wavs for chroma we should purge them for computing the cosine metric
has_predefined_eval_chromas = 'self_wav' in self.model.condition_provider.conditioners and \
self.model.condition_provider.conditioners['self_wav'].has_eval_wavs()
if has_predefined_eval_chromas:
warn_once(self.logger, "Attempting to run cosine eval for config with pre-defined eval chromas! "
'Resetting eval chromas to None for evaluation.')
eval_chroma_wavs = self.model.condition_provider.conditioners.self_wav.eval_wavs # type: ignore
self.model.condition_provider.conditioners.self_wav.reset_eval_wavs(None) # type: ignore
should_run_eval = True
def get_compressed_audio(audio: torch.Tensor) -> torch.Tensor:
audio_tokens, scale = self.compression_model.encode(audio.to(self.device))
compressed_audio = self.compression_model.decode(audio_tokens, scale)
return compressed_audio[..., :audio.shape[-1]]
metrics: dict = {}
if should_run_eval:
loader = self.dataloaders['evaluate']
updates = len(loader)
lp = self.log_progress(f'{evaluate_stage_name} inference', loader, total=updates, updates=self.log_updates)
average = flashy.averager()
dataset = get_dataset_from_loader(loader)
assert isinstance(dataset, AudioDataset)
self.logger.info(f"Computing evaluation metrics on {len(dataset)} samples")
for idx, batch in enumerate(lp):
audio, meta = batch
assert all([self.cfg.sample_rate == m.sample_rate for m in meta])
target_duration = audio.shape[-1] / self.cfg.sample_rate
if self.cfg.evaluate.fixed_generation_duration:
target_duration = self.cfg.evaluate.fixed_generation_duration
gen_outputs = self.run_generate_step(
batch, gen_duration=target_duration,
**self.generation_params
)
y_pred = gen_outputs['gen_audio'].detach()
y_pred = y_pred[..., :audio.shape[-1]]
normalize_kwargs = dict(self.cfg.generate.audio)
normalize_kwargs.pop('format', None)
y_pred = torch.stack([normalize_audio(w, **normalize_kwargs) for w in y_pred], dim=0).cpu()
y = audio.cpu() # should already be on CPU but just in case
sizes = torch.tensor([m.n_frames for m in meta]) # actual sizes without padding
sample_rates = torch.tensor([m.sample_rate for m in meta]) # sample rates for audio samples
audio_stems = [Path(m.meta.path).stem + f"_{m.seek_time}" for m in meta]
if fad is not None:
if self.cfg.metrics.fad.use_gt:
y_pred = get_compressed_audio(y).cpu()
fad.update(y_pred, y, sizes, sample_rates, audio_stems)
if kldiv is not None:
if self.cfg.metrics.kld.use_gt:
y_pred = get_compressed_audio(y).cpu()
kldiv.update(y_pred, y, sizes, sample_rates)
if text_consistency is not None:
texts = [m.description for m in meta]
if self.cfg.metrics.text_consistency.use_gt:
y_pred = y
text_consistency.update(y_pred, texts, sizes, sample_rates)
if chroma_cosine is not None:
if self.cfg.metrics.chroma_cosine.use_gt:
y_pred = get_compressed_audio(y).cpu()
chroma_cosine.update(y_pred, y, sizes, sample_rates)
# restore chroma conditioner's eval chroma wavs
if eval_chroma_wavs is not None:
self.model.condition_provider.conditioners['self_wav'].reset_eval_wavs(eval_chroma_wavs)
flashy.distrib.barrier()
if fad is not None:
metrics['fad'] = fad.compute()
if kldiv is not None:
kld_metrics = kldiv.compute()
metrics.update(kld_metrics)
if text_consistency is not None:
metrics['text_consistency'] = text_consistency.compute()
if chroma_cosine is not None:
metrics['chroma_cosine'] = chroma_cosine.compute()
metrics = average(metrics)
metrics = flashy.distrib.average_metrics(metrics, len(loader))
return metrics
def evaluate(self) -> dict:
"""Evaluate stage."""
self.model.eval()
with torch.no_grad():
metrics: dict = {}
if self.cfg.evaluate.metrics.base:
metrics.update(self.common_train_valid('evaluate'))
gen_metrics = self.evaluate_audio_generation()
return {**metrics, **gen_metrics}
|