Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,591 Bytes
9d0d223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MAGNeT\n",
"Welcome to MAGNeT's demo jupyter notebook. \n",
"Here you will find a self-contained example of how to use MAGNeT for music/sound-effect generation.\n",
"\n",
"First, we start by initializing MAGNeT for music generation, you can choose a model from the following selection:\n",
"1. facebook/magnet-small-10secs - a 300M non-autoregressive transformer capable of generating 10-second music conditioned on text.\n",
"2. facebook/magnet-medium-10secs - 1.5B parameters, 10 seconds music samples.\n",
"3. facebook/magnet-small-30secs - 300M parameters, 30 seconds music samples.\n",
"4. facebook/magnet-medium-30secs - 1.5B parameters, 30 seconds music samples.\n",
"\n",
"We will use the `facebook/magnet-small-10secs` variant for the purpose of this demonstration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from audiocraft.models import MAGNeT\n",
"\n",
"model = MAGNeT.get_pretrained('facebook/magnet-small-10secs')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let us configure the generation parameters. Specifically, you can control the following:\n",
"* `use_sampling` (bool, optional): use sampling if True, else do argmax decoding. Defaults to True.\n",
"* `top_k` (int, optional): top_k used for sampling. Defaults to 0.\n",
"* `top_p` (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.9.\n",
"* `temperature` (float, optional): Initial softmax temperature parameter. Defaults to 3.0.\n",
"* `max_clsfg_coef` (float, optional): Initial coefficient used for classifier free guidance. Defaults to 10.0.\n",
"* `min_clsfg_coef` (float, optional): Final coefficient used for classifier free guidance. Defaults to 1.0.\n",
"* `decoding_steps` (list of n_q ints, optional): The number of iterative decoding steps, for each of the n_q RVQ codebooks.\n",
"* `span_arrangement` (str, optional): Use either non-overlapping spans ('nonoverlap') or overlapping spans ('stride1') \n",
" in the masking scheme. \n",
"\n",
"When left unchanged, MAGNeT will revert to its default parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.set_generation_params(\n",
" use_sampling=True,\n",
" top_k=0,\n",
" top_p=0.9,\n",
" temperature=3.0,\n",
" max_cfg_coef=10.0,\n",
" min_cfg_coef=1.0,\n",
" decoding_steps=[int(20 * model.lm.cfg.dataset.segment_duration // 10), 10, 10, 10],\n",
" span_arrangement='stride1'\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we can go ahead and start generating music given textual prompts."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Text-conditional Generation - Music"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from audiocraft.utils.notebook import display_audio\n",
"\n",
"###### Text-to-music prompts - examples ######\n",
"text = \"80s electronic track with melodic synthesizers, catchy beat and groovy bass\"\n",
"# text = \"80s electronic track with melodic synthesizers, catchy beat and groovy bass. 170 bpm\"\n",
"# text = \"Earthy tones, environmentally conscious, ukulele-infused, harmonic, breezy, easygoing, organic instrumentation, gentle grooves\"\n",
"# text = \"Funky groove with electric piano playing blue chords rhythmically\"\n",
"# text = \"Rock with saturated guitars, a heavy bass line and crazy drum break and fills.\"\n",
"# text = \"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle\"\n",
" \n",
"N_VARIATIONS = 3\n",
"descriptions = [text for _ in range(N_VARIATIONS)]\n",
"\n",
"print(f\"text prompt: {text}\\n\")\n",
"output = model.generate(descriptions=descriptions, progress=True, return_tokens=True)\n",
"display_audio(output[0], sample_rate=model.compression_model.sample_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Text-conditional Generation - Sound Effects"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Besides music, MAGNeT models can generate sound effects given textual prompts. \n",
"First, let's load an Audio-MAGNeT model, out of the following collection: \n",
"1. facebook/audio-magnet-small - a 300M non-autoregressive transformer capable of generating 10 second sound effects conditioned on text.\n",
"2. facebook/audio-magnet-medium - 10 second sound effect generation, 1.5B parameters.\n",
"\n",
"We will use the `facebook/audio-magnet-small` variant for the purpose of this demonstration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from audiocraft.models import MAGNeT\n",
"\n",
"model = MAGNeT.get_pretrained('facebook/audio-magnet-small')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The recommended parameters for sound generation are a bit different than the defaults in MAGNeT, let's initialize it: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.set_generation_params(\n",
" use_sampling=True,\n",
" top_k=0,\n",
" top_p=0.8,\n",
" temperature=3.5,\n",
" max_cfg_coef=20.0,\n",
" min_cfg_coef=1.0,\n",
" decoding_steps=[int(20 * model.lm.cfg.dataset.segment_duration // 10), 10, 10, 10],\n",
" span_arrangement='stride1'\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we can go ahead and start generating sounds given textual prompts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from audiocraft.utils.notebook import display_audio\n",
" \n",
"###### Text-to-audio prompts - examples ######\n",
"text = \"Seagulls squawking as ocean waves crash while wind blows heavily into a microphone.\"\n",
"# text = \"A toilet flushing as music is playing and a man is singing in the distance.\"\n",
"\n",
"N_VARIATIONS = 3\n",
"descriptions = [text for _ in range(N_VARIATIONS)]\n",
"\n",
"print(f\"text prompt: {text}\\n\")\n",
"output = model.generate(descriptions=descriptions, progress=True, return_tokens=True)\n",
"display_audio(output[0], sample_rate=model.compression_model.sample_rate)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"vscode": {
"interpreter": {
"hash": "b02c911f9b3627d505ea4a19966a915ef21f28afb50dbf6b2115072d27c69103"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|