Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,563 Bytes
9d0d223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import typing as tp
import julius
import torch
import torchaudio
from torch import nn
from torch.nn import functional as F
from torchaudio.functional.filtering import highpass_biquad, treble_biquad
def basic_loudness(waveform: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""This is a simpler loudness function that is more stable.
Args:
waveform(torch.Tensor): audio waveform of dimension `(..., channels, time)`
sample_rate (int): sampling rate of the waveform
Returns:
loudness loss as a scalar
"""
if waveform.size(-2) > 5:
raise ValueError("Only up to 5 channels are supported.")
eps = torch.finfo(torch.float32).eps
gate_duration = 0.4
overlap = 0.75
gate_samples = int(round(gate_duration * sample_rate))
step = int(round(gate_samples * (1 - overlap)))
# Apply K-weighting
waveform = treble_biquad(waveform, sample_rate, 4.0, 1500.0, 1 / math.sqrt(2))
waveform = highpass_biquad(waveform, sample_rate, 38.0, 0.5)
# Compute the energy for each block
energy = torch.square(waveform).unfold(-1, gate_samples, step)
energy = torch.mean(energy, dim=-1)
# Compute channel-weighted summation
g = torch.tensor([1.0, 1.0, 1.0, 1.41, 1.41], dtype=waveform.dtype, device=waveform.device)
g = g[: energy.size(-2)]
energy_weighted = torch.sum(g.unsqueeze(-1) * energy, dim=-2)
# loudness with epsilon for stability. Not as much precision in the very low loudness sections
loudness = -0.691 + 10 * torch.log10(energy_weighted + eps)
return loudness
def _unfold(a: torch.Tensor, kernel_size: int, stride: int) -> torch.Tensor:
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
with K the kernel size, by extracting frames with the given stride.
This will pad the input so that `F = ceil(T / K)`.
see https://github.com/pytorch/pytorch/issues/60466
"""
*shape, length = a.shape
n_frames = math.ceil(length / stride)
tgt_length = (n_frames - 1) * stride + kernel_size
a = F.pad(a, (0, tgt_length - length))
strides = list(a.stride())
assert strides[-1] == 1, "data should be contiguous"
strides = strides[:-1] + [stride, 1]
return a.as_strided([*shape, n_frames, kernel_size], strides)
class FLoudnessRatio(nn.Module):
"""FSNR loss.
Input should be [B, C, T], output is scalar.
Args:
sample_rate (int): Sample rate.
segment (float or None): Evaluate on chunks of that many seconds. If None, evaluate on
entire audio only.
overlap (float): Overlap between chunks, i.e. 0.5 = 50 % overlap.
epsilon (float): Epsilon value for numerical stability.
n_bands (int): number of mel scale bands that we include
"""
def __init__(
self,
sample_rate: int = 16000,
segment: tp.Optional[float] = 20,
overlap: float = 0.5,
epsilon: float = torch.finfo(torch.float32).eps,
n_bands: int = 0,
):
super().__init__()
self.sample_rate = sample_rate
self.segment = segment
self.overlap = overlap
self.epsilon = epsilon
if n_bands == 0:
self.filter = None
else:
self.filter = julius.SplitBands(sample_rate=sample_rate, n_bands=n_bands)
self.loudness = torchaudio.transforms.Loudness(sample_rate)
def forward(self, out_sig: torch.Tensor, ref_sig: torch.Tensor) -> torch.Tensor:
B, C, T = ref_sig.shape
assert ref_sig.shape == out_sig.shape
assert self.filter is not None
bands_ref = self.filter(ref_sig)
bands_out = self.filter(out_sig)
l_noise = self.loudness(bands_ref - bands_out)
l_ref = self.loudness(bands_ref)
l_ratio = (l_noise - l_ref).view(-1, B)
loss = torch.nn.functional.softmax(l_ratio, dim=0) * l_ratio
return loss.sum()
class TLoudnessRatio(nn.Module):
"""TSNR loss.
Input should be [B, C, T], output is scalar.
Args:
sample_rate (int): Sample rate.
segment (float or None): Evaluate on chunks of that many seconds. If None, evaluate on
entire audio only.
overlap (float): Overlap between chunks, i.e. 0.5 = 50 % overlap.
"""
def __init__(
self,
sample_rate: int = 16000,
segment: float = 0.5,
overlap: float = 0.5,
):
super().__init__()
self.sample_rate = sample_rate
self.segment = segment
self.overlap = overlap
self.loudness = torchaudio.transforms.Loudness(sample_rate)
def forward(self, out_sig: torch.Tensor, ref_sig: torch.Tensor) -> torch.Tensor:
B, C, T = ref_sig.shape
assert ref_sig.shape == out_sig.shape
assert C == 1
frame = int(self.segment * self.sample_rate)
stride = int(frame * (1 - self.overlap))
gt = _unfold(ref_sig, frame, stride).view(-1, 1, frame)
est = _unfold(out_sig, frame, stride).view(-1, 1, frame)
l_noise = self.loudness(gt - est) # watermark
l_ref = self.loudness(gt) # ground truth
l_ratio = (l_noise - l_ref).view(-1, B)
loss = torch.nn.functional.softmax(l_ratio, dim=0) * l_ratio
return loss.sum()
class TFLoudnessRatio(nn.Module):
"""TF-loudness ratio loss.
Input should be [B, C, T], output is scalar.
Args:
sample_rate (int): Sample rate.
segment (float or None): Evaluate on chunks of that many seconds. If None, evaluate on
entire audio only.
overlap (float): Overlap between chunks, i.e. 0.5 = 50 % overlap.
n_bands (int): number of bands to separate
temperature (float): temperature of the softmax step
"""
def __init__(
self,
sample_rate: int = 16000,
segment: float = 0.5,
overlap: float = 0.5,
n_bands: int = 0,
clip_min: float = -100,
temperature: float = 1.0,
):
super().__init__()
self.sample_rate = sample_rate
self.segment = segment
self.overlap = overlap
self.clip_min = clip_min
self.temperature = temperature
if n_bands == 0:
self.filter = None
else:
self.n_bands = n_bands
self.filter = julius.SplitBands(sample_rate=sample_rate, n_bands=n_bands)
def forward(self, out_sig: torch.Tensor, ref_sig: torch.Tensor) -> torch.Tensor:
B, C, T = ref_sig.shape
assert ref_sig.shape == out_sig.shape
assert C == 1
assert self.filter is not None
bands_ref = self.filter(ref_sig).view(B * self.n_bands, 1, -1)
bands_out = self.filter(out_sig).view(B * self.n_bands, 1, -1)
frame = int(self.segment * self.sample_rate)
stride = int(frame * (1 - self.overlap))
gt = _unfold(bands_ref, frame, stride).squeeze(1).contiguous().view(-1, 1, frame)
est = _unfold(bands_out, frame, stride).squeeze(1).contiguous().view(-1, 1, frame)
l_noise = basic_loudness(est - gt, sample_rate=self.sample_rate) # watermark
l_ref = basic_loudness(gt, sample_rate=self.sample_rate) # ground truth
l_ratio = (l_noise - l_ref).view(-1, B)
loss = torch.nn.functional.softmax(l_ratio / self.temperature, dim=0) * l_ratio
return loss.mean()
|