File size: 18,020 Bytes
9d0d223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Compression models or wrapper around existing models.
Also defines the main interface that a model must follow to be usable as an audio tokenizer.
"""

from abc import ABC, abstractmethod
import logging
import math
from pathlib import Path
import typing as tp

from einops import rearrange
import numpy as np
import torch
from torch import nn
from transformers import EncodecModel as HFEncodecModel

from .. import quantization as qt


logger = logging.getLogger()


class CompressionModel(ABC, nn.Module):
    """Base API for all compression models that aim at being used as audio tokenizers
    with a language model.
    """

    @abstractmethod
    def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
        ...

    @abstractmethod
    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """See `EncodecModel.encode`."""
        ...

    @abstractmethod
    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        """See `EncodecModel.decode`."""
        ...

    @abstractmethod
    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        ...

    @property
    @abstractmethod
    def channels(self) -> int:
        ...

    @property
    @abstractmethod
    def frame_rate(self) -> float:
        ...

    @property
    @abstractmethod
    def sample_rate(self) -> int:
        ...

    @property
    @abstractmethod
    def cardinality(self) -> int:
        ...

    @property
    @abstractmethod
    def num_codebooks(self) -> int:
        ...

    @property
    @abstractmethod
    def total_codebooks(self) -> int:
        ...

    @abstractmethod
    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer."""
        ...

    @staticmethod
    def get_pretrained(
            name: str, device: tp.Union[torch.device, str] = 'cpu'
            ) -> 'CompressionModel':
        """Instantiate a CompressionModel from a given pretrained model.

        Args:
            name (Path or str): name of the pretrained model. See after.
            device (torch.device or str): Device on which the model is loaded.

        Pretrained models:
            - dac_44khz (https://github.com/descriptinc/descript-audio-codec)
            - dac_24khz (same)
            - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz)
            - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz)
            - your own model on Hugging Face. Export instructions to come...
        """

        from . import builders, loaders
        model: CompressionModel
        if name in ['dac_44khz', 'dac_24khz']:
            model_type = name.split('_')[1]
            logger.info("Getting pretrained compression model from DAC %s", model_type)
            model = DAC(model_type)
        elif name in ['debug_compression_model']:
            logger.info("Getting pretrained compression model for debug")
            model = builders.get_debug_compression_model()
        elif Path(name).exists():
            # We assume here if the path exists that it is in fact an AC checkpoint
            # that was exported using `audiocraft.utils.export` functions.
            model = loaders.load_compression_model(name, device=device)
        else:
            logger.info("Getting pretrained compression model from HF %s", name)
            hf_model = HFEncodecModel.from_pretrained(name)
            model = HFEncodecCompressionModel(hf_model).to(device)
        return model.to(device).eval()


class EncodecModel(CompressionModel):
    """Encodec model operating on the raw waveform.

    Args:
        encoder (nn.Module): Encoder network.
        decoder (nn.Module): Decoder network.
        quantizer (qt.BaseQuantizer): Quantizer network.
        frame_rate (int): Frame rate for the latent representation.
        sample_rate (int): Audio sample rate.
        channels (int): Number of audio channels.
        causal (bool): Whether to use a causal version of the model.
        renormalize (bool): Whether to renormalize the audio before running the model.
    """
    # we need assignment to override the property in the abstract class,
    # I couldn't find a better way...
    frame_rate: float = 0
    sample_rate: int = 0
    channels: int = 0

    def __init__(self,
                 encoder: nn.Module,
                 decoder: nn.Module,
                 quantizer: qt.BaseQuantizer,
                 frame_rate: int,
                 sample_rate: int,
                 channels: int,
                 causal: bool = False,
                 renormalize: bool = False):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.quantizer = quantizer
        self.frame_rate = frame_rate
        self.sample_rate = sample_rate
        self.channels = channels
        self.renormalize = renormalize
        self.causal = causal
        if self.causal:
            # we force disabling here to avoid handling linear overlap of segments
            # as supported in original EnCodec codebase.
            assert not self.renormalize, 'Causal model does not support renormalize'

    @property
    def total_codebooks(self):
        """Total number of quantizer codebooks available."""
        return self.quantizer.total_codebooks

    @property
    def num_codebooks(self):
        """Active number of codebooks used by the quantizer."""
        return self.quantizer.num_codebooks

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer."""
        self.quantizer.set_num_codebooks(n)

    @property
    def cardinality(self):
        """Cardinality of each codebook."""
        return self.quantizer.bins

    def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        scale: tp.Optional[torch.Tensor]
        if self.renormalize:
            mono = x.mean(dim=1, keepdim=True)
            volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt()
            scale = 1e-8 + volume
            x = x / scale
            scale = scale.view(-1, 1)
        else:
            scale = None
        return x, scale

    def postprocess(self,
                    x: torch.Tensor,
                    scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor:
        if scale is not None:
            assert self.renormalize
            x = x * scale.view(-1, 1, 1)
        return x

    def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
        assert x.dim() == 3
        length = x.shape[-1]
        x, scale = self.preprocess(x)

        emb = self.encoder(x)
        q_res = self.quantizer(emb, self.frame_rate)
        out = self.decoder(q_res.x)

        # remove extra padding added by the encoder and decoder
        assert out.shape[-1] >= length, (out.shape[-1], length)
        out = out[..., :length]

        q_res.x = self.postprocess(out, scale)

        return q_res

    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """Encode the given input tensor to quantized representation along with scale parameter.

        Args:
            x (torch.Tensor): Float tensor of shape [B, C, T]

        Returns:
            codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of:
                codes: a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep.
                scale: a float tensor containing the scale for audio renormalization.
        """
        assert x.dim() == 3
        x, scale = self.preprocess(x)
        emb = self.encoder(x)
        codes = self.quantizer.encode(emb)
        return codes, scale

    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        """Decode the given codes to a reconstructed representation, using the scale to perform
        audio denormalization if needed.

        Args:
            codes (torch.Tensor): Int tensor of shape [B, K, T]
            scale (torch.Tensor, optional): Float tensor containing the scale value.

        Returns:
            out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio.
        """
        emb = self.decode_latent(codes)
        out = self.decoder(emb)
        out = self.postprocess(out, scale)
        # out contains extra padding added by the encoder and decoder
        return out

    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        return self.quantizer.decode(codes)


class DAC(CompressionModel):
    def __init__(self, model_type: str = "44khz"):
        super().__init__()
        try:
            import dac.utils
        except ImportError:
            raise RuntimeError("Could not import dac, make sure it is installed, "
                               "please run `pip install descript-audio-codec`")
        self.model = dac.utils.load_model(model_type=model_type)
        self.n_quantizers = self.total_codebooks
        self.model.eval()

    def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
        # We don't support training with this.
        raise NotImplementedError("Forward and training with DAC not supported.")

    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        codes = self.model.encode(x, self.n_quantizers)[1]
        return codes[:, :self.n_quantizers], None

    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        assert scale is None
        z_q = self.decode_latent(codes)
        return self.model.decode(z_q)

    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        return self.model.quantizer.from_codes(codes)[0]

    @property
    def channels(self) -> int:
        return 1

    @property
    def frame_rate(self) -> float:
        return self.model.sample_rate / self.model.hop_length

    @property
    def sample_rate(self) -> int:
        return self.model.sample_rate

    @property
    def cardinality(self) -> int:
        return self.model.codebook_size

    @property
    def num_codebooks(self) -> int:
        return self.n_quantizers

    @property
    def total_codebooks(self) -> int:
        return self.model.n_codebooks

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer.
        """
        assert n >= 1
        assert n <= self.total_codebooks
        self.n_quantizers = n


class HFEncodecCompressionModel(CompressionModel):
    """Wrapper around HuggingFace Encodec.
    """
    def __init__(self, model: HFEncodecModel):
        super().__init__()
        self.model = model
        bws = self.model.config.target_bandwidths
        num_codebooks = [
            bw * 1000 / (self.frame_rate * math.log2(self.cardinality))
            for bw in bws
        ]
        deltas = [nc - int(nc) for nc in num_codebooks]
        # Checking we didn't do some bad maths and we indeed have integers!
        assert all(deltas) <= 1e-3, deltas
        self.possible_num_codebooks = [int(nc) for nc in num_codebooks]
        self.set_num_codebooks(max(self.possible_num_codebooks))

    def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
        # We don't support training with this.
        raise NotImplementedError("Forward and training with HF EncodecModel not supported.")

    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        bandwidth_index = self.possible_num_codebooks.index(self.num_codebooks)
        bandwidth = self.model.config.target_bandwidths[bandwidth_index]
        res = self.model.encode(x, None, bandwidth)
        assert len(res[0]) == 1
        assert len(res[1]) == 1
        return res[0][0], res[1][0]

    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        if scale is None:
            scales = [None]  # type: ignore
        else:
            scales = scale  # type: ignore
        res = self.model.decode(codes[None], scales)
        return res[0]

    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        return self.model.quantizer.decode(codes.transpose(0, 1))

    @property
    def channels(self) -> int:
        return self.model.config.audio_channels

    @property
    def frame_rate(self) -> float:
        hop_length = int(np.prod(self.model.config.upsampling_ratios))
        return self.sample_rate / hop_length

    @property
    def sample_rate(self) -> int:
        return self.model.config.sampling_rate

    @property
    def cardinality(self) -> int:
        return self.model.config.codebook_size

    @property
    def num_codebooks(self) -> int:
        return self._num_codebooks

    @property
    def total_codebooks(self) -> int:
        return max(self.possible_num_codebooks)

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer.
        """
        if n not in self.possible_num_codebooks:
            raise ValueError(f"Allowed values for num codebooks: {self.possible_num_codebooks}")
        self._num_codebooks = n


class InterleaveStereoCompressionModel(CompressionModel):
    """Wraps a CompressionModel to support stereo inputs. The wrapped model
    will be applied independently to the left and right channels, and both codebooks
    will be interleaved. If the wrapped model returns a representation `[B, K ,T]` per
    channel, then the output will be `[B, K * 2, T]`  or `[B, K, T * 2]` depending on
    `per_timestep`.

    Args:
        model (CompressionModel): Compression model to wrap.
        per_timestep (bool): Whether to interleave on the timestep dimension
            or on the codebooks dimension.
    """
    def __init__(self, model: CompressionModel, per_timestep: bool = False):
        super().__init__()
        self.model = model
        self.per_timestep = per_timestep
        assert self.model.channels == 1, "Wrapped model is expected to be for monophonic audio"

    @property
    def total_codebooks(self):
        return self.model.total_codebooks

    @property
    def num_codebooks(self):
        """Active number of codebooks used by the quantizer.

        ..Warning:: this reports the number of codebooks after the interleaving
        of the codebooks!
        """
        return self.model.num_codebooks if self.per_timestep else self.model.num_codebooks * 2

    def set_num_codebooks(self, n: int):
        """Set the active number of codebooks used by the quantizer.

        ..Warning:: this sets the number of codebooks before the interleaving!
        """
        self.model.set_num_codebooks(n)

    @property
    def num_virtual_steps(self) -> float:
        """Return the number of virtual steps, e.g. one real step
        will be split into that many steps.
        """
        return 2 if self.per_timestep else 1

    @property
    def frame_rate(self) -> float:
        return self.model.frame_rate * self.num_virtual_steps

    @property
    def sample_rate(self) -> int:
        return self.model.sample_rate

    @property
    def channels(self) -> int:
        return 2

    @property
    def cardinality(self):
        """Cardinality of each codebook.
        """
        return self.model.cardinality

    def forward(self, x: torch.Tensor) -> qt.QuantizedResult:
        raise NotImplementedError("Not supported, use encode and decode.")

    def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        B, C, T = x.shape
        assert C == self.channels, f"Expecting stereo audio but audio num channels is {C}"

        indices_c0, scales_c0 = self.model.encode(x[:, 0, ...].unsqueeze(1))
        indices_c1, scales_c1 = self.model.encode(x[:, 1, ...].unsqueeze(1))
        indices = torch.stack([indices_c0, indices_c1], dim=0)
        scales: tp.Optional[torch.Tensor] = None
        if scales_c0 is not None and scales_c1 is not None:
            scales = torch.stack([scales_c0, scales_c1], dim=1)

        if self.per_timestep:
            indices = rearrange(indices, 'c b k t -> b k (t c)', c=2)
        else:
            indices = rearrange(indices, 'c b k t -> b (k c) t', c=2)

        return (indices, scales)

    def get_left_right_codes(self, codes: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        if self.per_timestep:
            codes = rearrange(codes, 'b k (t c) -> c b k t', c=2)
        else:
            codes = rearrange(codes, 'b (k c) t -> c b k t', c=2)
        return codes[0], codes[1]

    def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
        B, K, T = codes.shape
        assert T % self.num_virtual_steps == 0, "Provided codes' number of timesteps does not match"
        assert K == self.num_codebooks, "Provided codes' number of codebooks does not match"

        scale_c0, scale_c1 = None, None
        if scale is not None:
            assert scale.size(0) == B and scale.size(1) == 2, f"Scale has unexpected shape: {scale.shape}"
            scale_c0 = scale[0, ...]
            scale_c1 = scale[1, ...]

        codes_c0, codes_c1 = self.get_left_right_codes(codes)
        audio_c0 = self.model.decode(codes_c0, scale_c0)
        audio_c1 = self.model.decode(codes_c1, scale_c1)
        return torch.cat([audio_c0, audio_c1], dim=1)

    def decode_latent(self, codes: torch.Tensor):
        """Decode from the discrete codes to continuous latent space."""
        raise NotImplementedError("Not supported by interleaved stereo wrapped models.")