Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,202 Bytes
9d0d223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Adapted from MIT code under the original license
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
import typing as tp
import torch
from torch import nn
from torch.nn import functional as F
# TODO: Replace with torchaudio.STFT?
def _stft(x: torch.Tensor, fft_size: int, hop_length: int, win_length: int,
window: tp.Optional[torch.Tensor], normalized: bool) -> torch.Tensor:
"""Perform STFT and convert to magnitude spectrogram.
Args:
x: Input signal tensor (B, C, T).
fft_size (int): FFT size.
hop_length (int): Hop size.
win_length (int): Window length.
window (torch.Tensor or None): Window function type.
normalized (bool): Whether to normalize the STFT or not.
Returns:
torch.Tensor: Magnitude spectrogram (B, C, #frames, fft_size // 2 + 1).
"""
B, C, T = x.shape
x_stft = torch.stft(
x.view(-1, T), fft_size, hop_length, win_length, window,
normalized=normalized, return_complex=True,
)
x_stft = x_stft.view(B, C, *x_stft.shape[1:])
real = x_stft.real
imag = x_stft.imag
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)
class SpectralConvergenceLoss(nn.Module):
"""Spectral convergence loss.
"""
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
"""Calculate forward propagation.
Args:
x_mag: Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag: Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
torch.Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p="fro") / (torch.norm(y_mag, p="fro") + self.epsilon)
class LogSTFTMagnitudeLoss(nn.Module):
"""Log STFT magnitude loss.
Args:
epsilon (float): Epsilon value for numerical stability.
"""
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
"""Calculate forward propagation.
Args:
x_mag (torch.Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (torch.Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
torch.Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(torch.log(self.epsilon + y_mag), torch.log(self.epsilon + x_mag))
class STFTLosses(nn.Module):
"""STFT losses.
Args:
n_fft (int): Size of FFT.
hop_length (int): Hop length.
win_length (int): Window length.
window (str): Window function type.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
"""
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
window: str = "hann_window", normalized: bool = False,
epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.register_buffer("window", getattr(torch, window)(win_length))
self.spectral_convergenge_loss = SpectralConvergenceLoss(epsilon)
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss(epsilon)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Spectral convergence loss value.
torch.Tensor: Log STFT magnitude loss value.
"""
x_mag = _stft(x, self.n_fft, self.hop_length,
self.win_length, self.window, self.normalized) # type: ignore
y_mag = _stft(y, self.n_fft, self.hop_length,
self.win_length, self.window, self.normalized) # type: ignore
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return sc_loss, mag_loss
class STFTLoss(nn.Module):
"""Single Resolution STFT loss.
Args:
n_fft (int): Nb of FFT.
hop_length (int): Hop length.
win_length (int): Window length.
window (str): Window function type.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
factor_sc (float): Coefficient for the spectral loss.
factor_mag (float): Coefficient for the magnitude loss.
"""
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
window: str = "hann_window", normalized: bool = False,
factor_sc: float = 0.1, factor_mag: float = 0.1,
epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
self.loss = STFTLosses(n_fft, hop_length, win_length, window, normalized, epsilon)
self.factor_sc = factor_sc
self.factor_mag = factor_mag
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Single resolution STFT loss.
"""
sc_loss, mag_loss = self.loss(x, y)
return self.factor_sc * sc_loss + self.factor_mag * mag_loss
class MRSTFTLoss(nn.Module):
"""Multi resolution STFT loss.
Args:
n_ffts (Sequence[int]): Sequence of FFT sizes.
hop_lengths (Sequence[int]): Sequence of hop sizes.
win_lengths (Sequence[int]): Sequence of window lengths.
window (str): Window function type.
factor_sc (float): Coefficient for the spectral loss.
factor_mag (float): Coefficient for the magnitude loss.
normalized (bool): Whether to use normalized STFT or not.
epsilon (float): Epsilon for numerical stability.
"""
def __init__(self, n_ffts: tp.Sequence[int] = [1024, 2048, 512], hop_lengths: tp.Sequence[int] = [120, 240, 50],
win_lengths: tp.Sequence[int] = [600, 1200, 240], window: str = "hann_window",
factor_sc: float = 0.1, factor_mag: float = 0.1,
normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps):
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(n_ffts, hop_lengths, win_lengths):
self.stft_losses += [STFTLosses(fs, ss, wl, window, normalized, epsilon)]
self.factor_sc = factor_sc
self.factor_mag = factor_mag
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
x (torch.Tensor): Predicted signal (B, T).
y (torch.Tensor): Groundtruth signal (B, T).
Returns:
torch.Tensor: Multi resolution STFT loss.
"""
sc_loss = torch.Tensor([0.0])
mag_loss = torch.Tensor([0.0])
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss /= len(self.stft_losses)
mag_loss /= len(self.stft_losses)
return self.factor_sc * sc_loss + self.factor_mag * mag_loss
|