File size: 18,957 Bytes
2131369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
"""Neural network implementation for BackpropNEAT."""
import jax
import jax.numpy as jnp
import numpy as np
from typing import Dict, List, Optional, Tuple, Union
from .genome import Genome
import copy
import random
class Network:
"""Neural network for NEAT implementation.
Implements a strictly feed-forward network following original NEAT principles:
1. Start minimal - direct input-output connections only
2. Complexify gradually through structural mutations
3. Protect innovation through speciation
4. No recurrent connections (as per requirements)
"""
def __init__(self, genome: Genome):
"""Initialize network from genome."""
# Store genome and sizes
self.genome = genome
# Verify genome sizes match volleyball requirements
if genome.input_size != 12 or genome.output_size != 3:
print(f"Warning: Genome size mismatch. Expected 12 inputs, 3 outputs. Got {genome.input_size} inputs, {genome.output_size} outputs")
genome.input_size = 12
genome.output_size = 3
self.input_size = 12 # Fixed for volleyball
self.output_size = 3 # Fixed for volleyball
# Deep copy to avoid shared references
self.node_genes = {}
self.connection_genes = []
# Create input nodes (0 to 11)
for i in range(12):
self.node_genes[i] = NodeGene(i, 'input', 'linear')
# Create bias node (12)
self.node_genes[12] = NodeGene(12, 'bias', 'linear')
# Create output nodes (13, 14, 15)
for i in range(3):
node_id = 13 + i
self.node_genes[node_id] = NodeGene(node_id, 'output', 'sigmoid')
# Connect to bias with appropriate weight based on action type
if i < 2: # Left/Right actions: encourage movement
self.connection_genes.append(
ConnectionGene(12, node_id, random.uniform(0.0, 1.0), True)
)
else: # Jump action: neutral bias
self.connection_genes.append(
ConnectionGene(12, node_id, random.uniform(-0.5, 0.5), True)
)
# Connect to relevant inputs with larger weights
if i == 0: # Left action: connect to ball x position and velocity
self.connection_genes.append(
ConnectionGene(0, node_id, random.uniform(0.5, 1.5), True) # ball x
)
self.connection_genes.append(
ConnectionGene(2, node_id, random.uniform(0.5, 1.5), True) # ball vx
)
elif i == 1: # Right action: connect to ball x position and velocity
self.connection_genes.append(
ConnectionGene(0, node_id, random.uniform(-1.5, -0.5), True) # ball x
)
self.connection_genes.append(
ConnectionGene(2, node_id, random.uniform(-1.5, -0.5), True) # ball vx
)
else: # Jump action: connect to ball y position and velocity
self.connection_genes.append(
ConnectionGene(1, node_id, random.uniform(-1.5, -0.5), True) # ball y
)
self.connection_genes.append(
ConnectionGene(3, node_id, random.uniform(-1.0, 0.0), True) # ball vy
)
# Copy existing nodes (if any)
for node_id, node in genome.node_genes.items():
if node_id not in self.node_genes: # Skip I/O nodes
self.node_genes[node_id] = NodeGene(
node_id,
node.node_type,
node.activation
)
# Copy connections
if genome.connection_genes:
# Clear initial connections if genome has its own
self.connection_genes = []
for conn in genome.connection_genes:
# Verify connection nodes exist
if conn.source not in self.node_genes or conn.target not in self.node_genes:
print(f"Warning: Connection {conn.source}->{conn.target} references missing nodes")
continue
self.connection_genes.append(ConnectionGene(
conn.source,
conn.target,
conn.weight,
conn.enabled
))
# Verify output connections (13, 14, 15)
for output_id in [13, 14, 15]:
has_connection = False
for conn in self.connection_genes:
if conn.enabled and conn.target == output_id:
has_connection = True
break
if not has_connection:
print(f"Adding missing connections for output {output_id}")
# Connect to bias
self.connection_genes.append(
ConnectionGene(12, output_id, random.uniform(-1.0, 1.0), True)
)
# Connect to random input
input_id = random.randint(0, 11)
self.connection_genes.append(
ConnectionGene(input_id, output_id, random.uniform(-1.0, 1.0), True)
)
# Build evaluation order
self.node_evals = {}
self._build_feed_forward_order()
# Verify all outputs are properly connected
self._verify_outputs()
def _verify_outputs(self):
"""Verify all outputs have valid connections and evaluations."""
output_ids = {13, 14, 15} # Fixed output IDs
# Check node evaluations
for output_id in output_ids:
if output_id not in self.node_evals:
print(f"Adding missing evaluation for output {output_id}")
bias_id = 12
self.node_evals[output_id] = {
'inputs': [bias_id],
'weights': [1.0],
'activation': 'sigmoid'
}
# Add connection if needed
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
self.connection_genes.append(
ConnectionGene(bias_id, output_id, 1.0, True)
)
def _create_minimal_connections(self):
"""Create minimal initial connections for a new network."""
bias_id = 12
output_start = bias_id + 1
# Connect each output to bias and one random input
for i in range(self.output_size):
output_id = output_start + i
# Connect to bias
self.connection_genes.append(ConnectionGene(
bias_id, output_id,
random.uniform(-1.0, 1.0),
True
))
# Connect to random input
input_id = random.randint(0, self.input_size - 1)
self.connection_genes.append(ConnectionGene(
input_id, output_id,
random.uniform(-1.0, 1.0),
True
))
def _build_feed_forward_order(self):
"""Build evaluation order ensuring feed-forward only topology."""
try:
# Fixed node sets for volleyball
input_nodes = set(range(12)) # 0-11
bias_node = {12} # Bias node
output_nodes = {13, 14, 15} # Output nodes
# Create adjacency lists
connections = {}
for conn in self.connection_genes:
if not conn.enabled:
continue
if conn.source not in connections:
connections[conn.source] = []
connections[conn.source].append(conn.target)
# Start with inputs and bias evaluated
evaluated = input_nodes | bias_node
eval_order = []
# Helper function to check if a node can be evaluated
def can_evaluate(node_id):
if node_id in connections:
return all(dep in evaluated for dep in connections[node_id])
return True
# Keep trying to evaluate nodes until we can't anymore
while True:
ready_nodes = set()
for node_id in self.node_genes:
if node_id not in evaluated and can_evaluate(node_id):
ready_nodes.add(node_id)
if not ready_nodes:
break
# Add nodes to evaluation order
for node_id in sorted(ready_nodes):
incoming = []
incoming_weights = []
for conn in self.connection_genes:
if conn.enabled and conn.target == node_id:
incoming.append(conn.source)
incoming_weights.append(conn.weight)
if incoming: # Only add if node has inputs
self.node_evals[node_id] = {
'inputs': incoming,
'weights': incoming_weights,
'activation': self.node_genes[node_id].activation
}
eval_order.append(node_id)
evaluated.add(node_id)
# Ensure all outputs have evaluations
for output_id in output_nodes:
if output_id not in self.node_evals:
print(f"Adding default evaluation for output {output_id}")
# Connect to bias by default
self.node_evals[output_id] = {
'inputs': [12], # Bias node
'weights': [1.0],
'activation': 'sigmoid'
}
# Add connection if needed
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
self.connection_genes.append(
ConnectionGene(12, output_id, 1.0, True)
)
except Exception as e:
print(f"Error in feed-forward build: {e}")
# Create minimal fallback evaluations
self.node_evals = {}
for i in range(3): # 3 outputs
output_id = 13 + i
self.node_evals[output_id] = {
'inputs': [12], # Bias node
'weights': [1.0],
'activation': 'sigmoid'
}
def forward(self, inputs: jnp.ndarray) -> jnp.ndarray:
"""Forward pass through the network."""
try:
# Only use first 8 inputs like original network
inputs = inputs[:8]
# Handle input shape
original_shape = inputs.shape
if len(inputs.shape) == 1:
inputs = inputs.reshape(1, -1)
batch_size = inputs.shape[0]
# Get max node ID for activation array
max_node_id = max(node.id for node in self.node_genes.values())
# Initialize activations array
activations = jnp.zeros((batch_size, max_node_id + 1))
# Set input values (0-7)
for i in range(8):
if i < len(inputs):
activations = activations.at[:, i].set(inputs[:, i])
else:
activations = activations.at[:, i].set(0.0)
# Initialize recurrent nodes (8-11) with previous outputs
# For now just use zeros, in the future we could store previous outputs
for i in range(8, 12):
activations = activations.at[:, i].set(0.0)
# Evaluate nodes in order (hidden then output)
for node_id, eval_info in self.node_evals.items():
try:
# Skip input and recurrent nodes
if node_id < 12:
continue
# Get weighted sum of inputs
act = jnp.zeros(batch_size)
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
act += activations[:, conn_source] * conn_weight
# Apply activation function
if eval_info['activation'] == 'tanh':
act = jnp.tanh(act)
elif eval_info['activation'] == 'sigmoid':
act = jax.nn.sigmoid(act)
elif eval_info['activation'] == 'relu':
act = jax.nn.relu(act)
# Apply threshold like original network for output nodes
if node_id >= 20: # Output nodes
act = jnp.where(act > 0.75, 1.0, 0.0)
activations = activations.at[:, node_id].set(act)
except Exception as e:
print(f"Error at node {node_id}: {e}")
# Get output node activations
output = activations[:, -3:]
# Update recurrent nodes for next time step
# (In a real implementation, we'd need to store these)
for i in range(8, 12):
act = jnp.zeros(batch_size)
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
if conn_source >= 20: # Only use output nodes
act += activations[:, conn_source] * conn_weight
activations = activations.at[:, i].set(jnp.tanh(act))
# Return to original shape
if len(original_shape) == 1:
output = output.reshape(-1)
return output
except Exception as e:
print(f"Error in forward pass: {e}")
return jnp.zeros(3)
def predict(self, inputs: jnp.ndarray) -> jnp.ndarray:
"""Make a prediction for the given inputs.
Args:
inputs: Input array of shape (input_size,) or (batch_size, input_size)
Returns:
Predictions of shape (3,) for single input or (batch_size, 3) for batch
"""
outputs = self.forward(inputs)
# Ensure correct output shape for volleyball (always 3 outputs)
if len(outputs.shape) == 1:
# Single input case - ensure shape (3,)
if outputs.shape[0] != 3:
print(f"Adjusting output shape from {outputs.shape} to (3,)")
return jnp.pad(outputs, (0, max(0, 3 - outputs.shape[0])))
return outputs
else:
# Batch case - ensure shape (batch_size, 3)
if outputs.shape[1] != 3:
print(f"Adjusting output shape from {outputs.shape} to (batch_size, 3)")
return jnp.pad(outputs, ((0, 0), (0, max(0, 3 - outputs.shape[1]))))
return outputs
def clone(self) -> 'Network':
"""Create a copy of this network with a cloned genome."""
return Network(self.genome.clone())
def mutate(self, config: Dict):
"""Mutate the network's genome."""
self.genome.mutate(config)
# Rebuild evaluation order after mutation
self._build_feed_forward_order()
def to_genome(self) -> Genome:
"""Convert network back to genome representation."""
genome = Genome(self.input_size, self.output_size)
genome.node_genes = copy.deepcopy(self.node_genes)
genome.connection_genes = copy.deepcopy(self.connection_genes)
return genome
class BaseNetwork:
"""Base Network class for NEAT."""
def __init__(self, n_inputs: int, n_outputs: int):
self.input_size = n_inputs
self.output_size = n_outputs
self.fitness = float('-inf')
# Initialize weights and biases with JAX
key = jax.random.PRNGKey(0)
# Use larger initial weights to encourage exploration
self.weights = jax.random.normal(key, (n_outputs, n_inputs)) * 0.5
# Add small positive bias to encourage some initial movement
self.bias = jnp.ones(n_outputs) * 0.1
def forward(self, x: jnp.ndarray) -> jnp.ndarray:
"""Forward pass through the network."""
if x.ndim > 1:
# Batched input
h = jnp.dot(x, self.weights.T) + self.bias[None, :]
else:
# Single input
h = jnp.dot(x, self.weights.T) + self.bias
return jnp.tanh(h)
def get_params(self) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Get network parameters."""
return self.weights, self.bias
def set_params(self, params: Tuple[jnp.ndarray, jnp.ndarray]):
"""Set network parameters."""
self.weights, self.bias = params
def get_weights_numpy(self) -> np.ndarray:
"""Get weights as numpy array for visualization."""
return np.array(self.weights)
class NodeGene:
"""Node gene containing node information."""
def __init__(self, node_id: int, node_type: str, activation: str = 'tanh'):
"""Initialize node gene.
Args:
node_id: Node ID
node_type: Type of node ('input', 'hidden', or 'output')
activation: Activation function ('tanh', 'sigmoid', or 'relu')
"""
self.id = node_id
self.type = node_type
self.activation = activation
# Initialize with larger random bias for hidden/output nodes
if node_type in ['hidden', 'output']:
key = jax.random.PRNGKey(node_id) # Use node_id as seed for reproducibility
self.bias = jax.random.normal(key, ()) * 0.5 # Increased from 0.1
else:
self.bias = 0.0 # No bias for input nodes
class ConnectionGene:
"""Gene representing a connection between nodes."""
def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
self.source = source
self.target = target
# Initialize with larger weights if not provided
if weight is None:
key = jax.random.PRNGKey(hash((source, target)) % 2**32)
self.weight = jax.random.uniform(key, (), minval=-2.0, maxval=2.0)
else:
self.weight = weight
self.enabled = enabled
self.innovation = None # Will be set by NEAT
|