Spaces:
Sleeping
Sleeping
File size: 20,407 Bytes
2f2406a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
# Imports
import re, regex
from . import utils
from .azure_translate import azure_translate_text
from operator import itemgetter
import sys
import copy
import os
import html
from pathlib import Path
combine_subtitles_max_chars = 200
translate_service = 'azure'
# -------------------------------- No Translate and Manual Translation Functions -----------------------------------
BASE_DIR = Path(__file__).resolve().parent.parent / 'SSML_Customization'
# Import files and put into dictionaries
noTranslateOverrideFile = os.path.join(BASE_DIR, 'dont_translate_phrases.txt')
dontTranslateList = utils.txt_to_list(noTranslateOverrideFile)
manualTranslationOverrideFile = os.path.join(BASE_DIR, 'Manual_Translations.csv')
manualTranslationsDict = utils.csv_to_dict(manualTranslationOverrideFile)
urlListFile = os.path.join(BASE_DIR, 'url_list.txt')
urlList = utils.txt_to_list(urlListFile)
# Add span tags around certain words to exclude them from being translated
def add_notranslate_tags_from_notranslate_file(text, phraseList):
for word in phraseList:
findWordRegex = rf'(\p{{Z}}|^)(["\'()]?{word}[.,!?()]?["\']?)(\p{{Z}}|$)' #\p ensures it works with unicode characters
findWordRegexCompiled = regex.compile(findWordRegex, flags=re.IGNORECASE | re.UNICODE)
# Find the word, with optional punctuation after, and optional quotes before or after
text = findWordRegexCompiled.sub(r'\1<span class="notranslate">\2</span>\3', text)
return text
def remove_notranslate_tags(text):
text = text.replace('<span class="notranslate">', '').replace('</span>', '')
return text
def add_notranslate_tags_for_manual_translations(text, langcode):
for manualTranslatedText in manualTranslationsDict:
# Only replace text if the language matches the entry in the manual translations file
if manualTranslatedText['Language Code'] == langcode:
originalText = manualTranslatedText['Original Text']
findWordRegex = rf'(\p{{Z}}|^)(["\'()]?{originalText}[.,!?()]?["\']?)(\p{{Z}}|$)'
findWordRegexCompiled = regex.compile(findWordRegex, flags=re.IGNORECASE | re.UNICODE)
text = findWordRegexCompiled.sub(r'\1<span class="notranslate">\2</span>\3', text)
return text
# Replace certain words or phrases with their manual translation
def replace_manual_translations(text, langcode):
for manualTranslatedText in manualTranslationsDict:
# Only replace text if the language matches the entry in the manual translations file
if manualTranslatedText['Language Code'] == langcode:
originalText = manualTranslatedText['Original Text']
translatedText = manualTranslatedText['Translated Text']
findWordRegex = rf'(\p{{Z}}|^)(["\'()]?{originalText}[.,!?()]?["\']?)(\p{{Z}}|$)'
findWordRegexCompiled = regex.compile(findWordRegex, flags=re.IGNORECASE | re.UNICODE)
# Substitute the matched word with the translated text
text = findWordRegexCompiled.sub(rf'\1{translatedText}\3', text)
return text
#======================================== Translate Text ================================================
# Note: This function was almost entirely written by GPT-3 after feeding it my original code and asking it to change it so it
# would break up the text into chunks if it was too long. It appears to work
def process_response_text(text, targetLanguage):
text = html.unescape(text)
text = remove_notranslate_tags(text)
text = replace_manual_translations(text, targetLanguage)
return text
def split_transcript_chunks(text, max_length=5000):
# Calculate the total number of utf-8 codepoints
#totalCodepoints = len(text.encode("utf-8"))
# Split the transcript into sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
# Initialize a list to store the chunks of text
chunks = []
# Initialize a string to store a chunk of text
chunk = ""
# For each sentence in the list of sentences
for sentence in sentences:
# If adding the sentence to the chunk would keep it within the maximum length
if len(chunk.encode("utf-8")) + len(sentence.encode("utf-8")) + 1 <= max_length: # Adding 1 to account for space
# Add the sentence to the chunk
chunk += sentence + " "
else:
# If adding the sentence would exceed the maximum length and chunk is not empty
if chunk:
# Add the chunk to the list of chunks
chunks.append(chunk.strip())
# Start a new chunk with the current sentence
chunk = sentence + " "
# Add the last chunk to the list of chunks (if it's not empty)
if chunk:
chunks.append(chunk.strip())
# Return the list of chunks
return chunks
def convertChunkListToCompatibleDict(chunkList):
# Create dictionary with numbers as keys and chunks as values
chunkDict = {}
for i, chunk in enumerate(chunkList, 1):
chunkDict[i] = {'text': chunk}
return chunkDict
# Translate the text entries of the dictionary
def translate_dictionary(inputSubsDict, langDict, translatedSrtFileName, skipTranslation=False, ):
targetLanguage = langDict['targetLanguage']
sourceLanguage = langDict['sourceLanguage']
translateService = langDict['translateService']
# Create a container for all the text to be translated
textToTranslate = []
for key in inputSubsDict:
originalText = inputSubsDict[key]['text']
# Add any 'notranslate' tags to the text
processedText = add_notranslate_tags_from_notranslate_file(originalText, dontTranslateList)
processedText = add_notranslate_tags_from_notranslate_file(processedText, urlList)
processedText = add_notranslate_tags_for_manual_translations(processedText, targetLanguage)
# Add the text to the list of text to be translated
textToTranslate.append(processedText)
# Calculate the total number of utf-8 codepoints
codepoints = 0
for text in textToTranslate:
codepoints += len(text.encode("utf-8"))
# If the codepoints are greater than 28000, split the request into multiple
# Google's API limit is 30000 Utf-8 codepoints per request, while DeepL's is 130000, but we leave some room just in case
if skipTranslation == False:
if translateService == 'azure':
print("Translating text using Azure...")
result = azure_translate_text(textToTranslate, sourceLanguage, targetLanguage)
# Add the translated texts to the dictionary
for i, key in enumerate(inputSubsDict):
inputSubsDict[key]['translated_text'] = process_response_text(result[i]["text"], targetLanguage)
# Print progress, overwrite the same line
print(f' Translated: {key} of {len(inputSubsDict)}', end='\r')
else:
print("Error: Invalid translate_service setting. Only 'Azure' is supported.")
sys.exit()
else:
for key in inputSubsDict:
inputSubsDict[key]['translated_text'] = process_response_text(inputSubsDict[key]['text'], targetLanguage) # Skips translating, such as for testing
print(" ")
combinedProcessedDict = combine_subtitles_advanced(inputSubsDict, int(combine_subtitles_max_chars))
if skipTranslation == False:
# Write new srt file with translated text
with open(translatedSrtFileName, 'w', encoding='utf-8-sig') as f:
for key in combinedProcessedDict:
f.write(str(key) + '\n')
f.write(combinedProcessedDict[key]['srt_timestamps_line'] + '\n')
f.write(combinedProcessedDict[key]['translated_text'] + '\n')
f.write('\n')
return combinedProcessedDict
##### Add additional info to the dictionary for each language #####
def set_translation_info(languageBatchDict):
newBatchSettingsDict = copy.deepcopy(languageBatchDict)
# If using Azure, set all languages to use Azure in dictionary
if translate_service == 'azure':
for langNum, langInfo in languageBatchDict.items():
newBatchSettingsDict[langNum]['translate_service'] = 'azure'
newBatchSettingsDict[langNum]['formality'] = None
else:
print("Error: No valid translation service selected. Please choose a valid service or enable 'skip_translation' in config.")
sys.exit()
return newBatchSettingsDict
#======================================== Combine Subtitle Lines ================================================
def combine_subtitles_advanced(inputDict, maxCharacters=200):
charRateGoal = 20 #20
gapThreshold = 100 # The maximum gap between subtitles to combine
noMorePossibleCombines = False
# Convert dictionary to list of dictionaries of the values
entryList = []
for key, value in inputDict.items():
value['originalIndex'] = int(key)-1
entryList.append(value)
while not noMorePossibleCombines:
entryList, noMorePossibleCombines = combine_single_pass(entryList, charRateGoal, gapThreshold, maxCharacters)
# Convert the list back to a dictionary then return it
return dict(enumerate(entryList, start=1))
def combine_single_pass(entryListLocal, charRateGoal, gapThreshold, maxCharacters):
# Want to restart the loop if a change is made, so use this variable, otherwise break only if the end is reached
reachedEndOfList = False
noMorePossibleCombines = True # Will be set to False if a combination is made
# Use while loop because the list is being modified
while not reachedEndOfList:
# Need to update original index in here
for entry in entryListLocal:
entry['originalIndex'] = entryListLocal.index(entry)
# Will use later to check if an entry is the last one in the list, because the last entry will have originalIndex equal to the length of the list - 1
originalNumberOfEntries = len(entryListLocal)
# Need to calculate the char_rate for each entry, any time something changes, so put it at the top of this loop
entryListLocal = calc_list_speaking_rates(entryListLocal, charRateGoal)
# Sort the list by the difference in speaking speed from charRateGoal
priorityOrderedList = sorted(entryListLocal, key=itemgetter('char_rate_diff'), reverse=True)
# Iterates through the list in order of priority, and uses that index to operate on entryListLocal
# For loop is broken after a combination is made, so that the list can be re-sorted and re-iterated
for progress, data in enumerate(priorityOrderedList):
i = data['originalIndex']
# Check if last entry, and therefore will end loop when done with this iteration
if progress == len(priorityOrderedList) - 1:
reachedEndOfList = True
# Check if the current entry is outside the upper and lower bounds
if (data['char_rate'] > charRateGoal or data['char_rate'] < charRateGoal):
# Check if the entry is the first in entryListLocal, if so do not consider the previous entry
if data['originalIndex'] == 0:
considerPrev = False
else:
considerPrev = True
# Check if the entry is the last in entryListLocal, if so do not consider the next entry
if data['originalIndex'] == originalNumberOfEntries - 1:
considerNext = False
else:
considerNext = True
# Check if current entry is still in the list - if it has been combined with another entry, it will not be
# Get the char_rate of the next and previous entries, if they exist, and calculate the difference
# If the diff is positive, then it is lower than the current char_rate
try:
nextCharRate = entryListLocal[i+1]['char_rate']
nextDiff = data['char_rate'] - nextCharRate
except IndexError:
considerNext = False
nextCharRate = None
nextDiff = None
try:
prevCharRate = entryListLocal[i-1]['char_rate']
prevDiff = data['char_rate'] - prevCharRate
except IndexError:
considerPrev = False
prevCharRate = None
prevDiff = None
else:
continue
# Define functions for combining with previous or next entries - Generated with copilot, it's possible this isn't perfect
def combine_with_next():
entryListLocal[i]['text'] = entryListLocal[i]['text'] + ' ' + entryListLocal[i+1]['text']
entryListLocal[i]['translated_text'] = entryListLocal[i]['translated_text'] + ' ' + entryListLocal[i+1]['translated_text']
entryListLocal[i]['end_ms'] = entryListLocal[i+1]['end_ms']
entryListLocal[i]['end_ms_buffered'] = entryListLocal[i+1]['end_ms_buffered']
entryListLocal[i]['duration_ms'] = int(entryListLocal[i+1]['end_ms']) - int(entryListLocal[i]['start_ms'])
entryListLocal[i]['duration_ms_buffered'] = int(entryListLocal[i+1]['end_ms_buffered']) - int(entryListLocal[i]['start_ms_buffered'])
entryListLocal[i]['srt_timestamps_line'] = entryListLocal[i]['srt_timestamps_line'].split(' --> ')[0] + ' --> ' + entryListLocal[i+1]['srt_timestamps_line'].split(' --> ')[1]
del entryListLocal[i+1]
def combine_with_prev():
entryListLocal[i-1]['text'] = entryListLocal[i-1]['text'] + ' ' + entryListLocal[i]['text']
entryListLocal[i-1]['translated_text'] = entryListLocal[i-1]['translated_text'] + ' ' + entryListLocal[i]['translated_text']
entryListLocal[i-1]['end_ms'] = entryListLocal[i]['end_ms']
entryListLocal[i-1]['end_ms_buffered'] = entryListLocal[i]['end_ms_buffered']
entryListLocal[i-1]['duration_ms'] = int(entryListLocal[i]['end_ms']) - int(entryListLocal[i-1]['start_ms'])
entryListLocal[i-1]['duration_ms_buffered'] = int(entryListLocal[i]['end_ms_buffered']) - int(entryListLocal[i-1]['start_ms_buffered'])
entryListLocal[i-1]['srt_timestamps_line'] = entryListLocal[i-1]['srt_timestamps_line'].split(' --> ')[0] + ' --> ' + entryListLocal[i]['srt_timestamps_line'].split(' --> ')[1]
del entryListLocal[i]
# Choose whether to consider next and previous entries, and if neither then continue to next loop
if data['char_rate'] > charRateGoal:
# Check to ensure next/previous rates are lower than current rate, and the combined entry is not too long, and the gap between entries is not too large
# Need to add check for considerNext and considerPrev first, because if run other checks when there is no next/prev value to check, it will throw an error
if considerNext == False or nextDiff or nextDiff < 0 or (entryListLocal[i]['break_until_next'] >= gapThreshold) or (len(entryListLocal[i]['translated_text']) + len(entryListLocal[i+1]['translated_text']) > maxCharacters):
considerNext = False
try:
if considerPrev == False or not prevDiff or prevDiff < 0 or (entryListLocal[i-1]['break_until_next'] >= gapThreshold) or (len(entryListLocal[i-1]['translated_text']) + len(entryListLocal[i]['translated_text']) > maxCharacters):
considerPrev = False
except TypeError:
considerPrev = False
elif data['char_rate'] < charRateGoal:
# Check to ensure next/previous rates are higher than current rate
if considerNext == False or not nextDiff or nextDiff > 0 or (entryListLocal[i]['break_until_next'] >= gapThreshold) or (len(entryListLocal[i]['translated_text']) + len(entryListLocal[i+1]['translated_text']) > maxCharacters):
considerNext = False
try:
if considerPrev == False or not prevDiff or prevDiff > 0 or (entryListLocal[i-1]['break_until_next'] >= gapThreshold) or (len(entryListLocal[i-1]['translated_text']) + len(entryListLocal[i]['translated_text']) > maxCharacters):
considerPrev = False
except TypeError:
considerPrev = False
else:
continue
# Continue to next loop if neither are considered
if not considerNext and not considerPrev:
continue
# Should only reach this point if two entries are to be combined
if data['char_rate'] > charRateGoal:
# If both are to be considered, then choose the one with the lower char_rate
if considerNext and considerPrev:
if nextDiff < prevDiff:
combine_with_next()
noMorePossibleCombines = False
break
else:
combine_with_prev()
noMorePossibleCombines = False
break
# If only one is to be considered, then combine with that one
elif considerNext:
combine_with_next()
noMorePossibleCombines = False
break
elif considerPrev:
combine_with_prev()
noMorePossibleCombines = False
break
else:
print(f"Error U: Should not reach this point! Current entry = {i}")
print(f"Current Entry Text = {data['text']}")
continue
elif data['char_rate'] < charRateGoal:
# If both are to be considered, then choose the one with the higher char_rate
if considerNext and considerPrev:
if nextDiff > prevDiff:
combine_with_next()
noMorePossibleCombines = False
break
else:
combine_with_prev()
noMorePossibleCombines = False
break
# If only one is to be considered, then combine with that one
elif considerNext:
combine_with_next()
noMorePossibleCombines = False
break
elif considerPrev:
combine_with_prev()
noMorePossibleCombines = False
break
else:
print(f"Error L: Should not reach this point! Index = {i}")
print(f"Current Entry Text = {data['text']}")
continue
return entryListLocal, noMorePossibleCombines
#-- End of combine_single_pass --
#----------------------------------------------------------------------
# Calculate the number of characters per second for each subtitle entry
def calc_dict_speaking_rates(inputDict, dictKey='translated_text'):
tempDict = copy.deepcopy(inputDict)
for key, value in tempDict.items():
tempDict[key]['char_rate'] = round(len(value[dictKey]) / (int(value['duration_ms']) / 1000), 2)
return tempDict
def calc_list_speaking_rates(inputList, charRateGoal, dictKey='translated_text'):
tempList = copy.deepcopy(inputList)
for i in range(len(tempList)):
# Calculate the number of characters per second based on the duration of the entry
tempList[i]['char_rate'] = round(len(tempList[i][dictKey]) / (int(tempList[i]['duration_ms']) / 1000), 2)
# Calculate the difference between the current char_rate and the goal char_rate - Absolute Value
tempList[i]['char_rate_diff'] = abs(round(tempList[i]['char_rate'] - charRateGoal, 2))
return tempList |