File size: 32,455 Bytes
287a0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
import hashlib
import logging
from functools import cached_property

from tenacity import stop_after_attempt, wait_random, retry, retry_if_exception

from chromadb.api.types import (
    Document,
    Documents,
    Embedding,
    Image,
    Images,
    EmbeddingFunction,
    Embeddings,
    is_image,
    is_document,
)

from pathlib import Path
import os
import tarfile
import requests
from typing import TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Union, cast
import numpy as np
import numpy.typing as npt
import importlib
import inspect
import json
import sys

try:
    from chromadb.is_thin_client import is_thin_client
except ImportError:
    is_thin_client = False

if TYPE_CHECKING:
    from onnxruntime import InferenceSession
    from tokenizers import Tokenizer

logger = logging.getLogger(__name__)


def _verify_sha256(fname: str, expected_sha256: str) -> bool:
    sha256_hash = hashlib.sha256()
    with open(fname, "rb") as f:
        # Read and update hash in chunks to avoid using too much memory
        for byte_block in iter(lambda: f.read(4096), b""):
            sha256_hash.update(byte_block)

    return sha256_hash.hexdigest() == expected_sha256


class SentenceTransformerEmbeddingFunction(EmbeddingFunction[Documents]):
    # Since we do dynamic imports we have to type this as Any
    models: Dict[str, Any] = {}

    # If you have a beefier machine, try "gtr-t5-large".
    # for a full list of options: https://huggingface.co/sentence-transformers, https://www.sbert.net/docs/pretrained_models.html
    def __init__(
        self,
        model_name: str = "all-MiniLM-L6-v2",
        device: str = "cpu",
        normalize_embeddings: bool = False,
    ):
        if model_name not in self.models:
            try:
                from sentence_transformers import SentenceTransformer
            except ImportError:
                raise ValueError(
                    "The sentence_transformers python package is not installed. Please install it with `pip install sentence_transformers`"
                )
            self.models[model_name] = SentenceTransformer(model_name, device=device)
        self._model = self.models[model_name]
        self._normalize_embeddings = normalize_embeddings

    def __call__(self, input: Documents) -> Embeddings:
        return cast(
            Embeddings,
            self._model.encode(
                list(input),
                convert_to_numpy=True,
                normalize_embeddings=self._normalize_embeddings,
            ).tolist(),
        )


class Text2VecEmbeddingFunction(EmbeddingFunction[Documents]):
    def __init__(self, model_name: str = "shibing624/text2vec-base-chinese"):
        try:
            from text2vec import SentenceModel
        except ImportError:
            raise ValueError(
                "The text2vec python package is not installed. Please install it with `pip install text2vec`"
            )
        self._model = SentenceModel(model_name_or_path=model_name)

    def __call__(self, input: Documents) -> Embeddings:
        return cast(
            Embeddings, self._model.encode(list(input), convert_to_numpy=True).tolist()
        )  # noqa E501


class OpenAIEmbeddingFunction(EmbeddingFunction[Documents]):
    def __init__(
        self,
        api_key: Optional[str] = None,
        model_name: str = "text-embedding-ada-002",
        organization_id: Optional[str] = None,
        api_base: Optional[str] = None,
        api_type: Optional[str] = None,
        api_version: Optional[str] = None,
        deployment_id: Optional[str] = None,
        default_headers: Optional[Mapping[str, str]] = None,
    ):
        """
        Initialize the OpenAIEmbeddingFunction.
        Args:
            api_key (str, optional): Your API key for the OpenAI API. If not
                provided, it will raise an error to provide an OpenAI API key.
            organization_id(str, optional): The OpenAI organization ID if applicable
            model_name (str, optional): The name of the model to use for text
                embeddings. Defaults to "text-embedding-ada-002".
            api_base (str, optional): The base path for the API. If not provided,
                it will use the base path for the OpenAI API. This can be used to
                point to a different deployment, such as an Azure deployment.
            api_type (str, optional): The type of the API deployment. This can be
                used to specify a different deployment, such as 'azure'. If not
                provided, it will use the default OpenAI deployment.
            api_version (str, optional): The api version for the API. If not provided,
                it will use the api version for the OpenAI API. This can be used to
                point to a different deployment, such as an Azure deployment.
            deployment_id (str, optional): Deployment ID for Azure OpenAI.
            default_headers (Mapping, optional): A mapping of default headers to be sent with each API request.

        """
        try:
            import openai
        except ImportError:
            raise ValueError(
                "The openai python package is not installed. Please install it with `pip install openai`"
            )

        if api_key is not None:
            openai.api_key = api_key
        # If the api key is still not set, raise an error
        elif openai.api_key is None:
            raise ValueError(
                "Please provide an OpenAI API key. You can get one at https://platform.openai.com/account/api-keys"
            )

        if api_base is not None:
            openai.api_base = api_base

        if api_version is not None:
            openai.api_version = api_version

        self._api_type = api_type
        if api_type is not None:
            openai.api_type = api_type

        if organization_id is not None:
            openai.organization = organization_id

        self._v1 = openai.__version__.startswith("1.")
        if self._v1:
            if api_type == "azure":
                self._client = openai.AzureOpenAI(
                    api_key=api_key,
                    api_version=api_version,
                    azure_endpoint=api_base,
                    default_headers=default_headers,
                ).embeddings
            else:
                self._client = openai.OpenAI(
                    api_key=api_key, base_url=api_base, default_headers=default_headers
                ).embeddings
        else:
            self._client = openai.Embedding
        self._model_name = model_name
        self._deployment_id = deployment_id

    def __call__(self, input: Documents) -> Embeddings:
        # replace newlines, which can negatively affect performance.
        input = [t.replace("\n", " ") for t in input]

        # Call the OpenAI Embedding API
        if self._v1:
            embeddings = self._client.create(
                input=input, model=self._deployment_id or self._model_name
            ).data

            # Sort resulting embeddings by index
            sorted_embeddings = sorted(embeddings, key=lambda e: e.index)

            # Return just the embeddings
            return cast(Embeddings, [result.embedding for result in sorted_embeddings])
        else:
            if self._api_type == "azure":
                embeddings = self._client.create(
                    input=input, engine=self._deployment_id or self._model_name
                )["data"]
            else:
                embeddings = self._client.create(input=input, model=self._model_name)[
                    "data"
                ]

            # Sort resulting embeddings by index
            sorted_embeddings = sorted(embeddings, key=lambda e: e["index"])

            # Return just the embeddings
            return cast(
                Embeddings, [result["embedding"] for result in sorted_embeddings]
            )


class CohereEmbeddingFunction(EmbeddingFunction[Documents]):
    def __init__(self, api_key: str, model_name: str = "large"):
        try:
            import cohere
        except ImportError:
            raise ValueError(
                "The cohere python package is not installed. Please install it with `pip install cohere`"
            )

        self._client = cohere.Client(api_key)
        self._model_name = model_name

    def __call__(self, input: Documents) -> Embeddings:
        # Call Cohere Embedding API for each document.
        return [
            embeddings
            for embeddings in self._client.embed(
                texts=input, model=self._model_name, input_type="search_document"
            )
        ]


class HuggingFaceEmbeddingFunction(EmbeddingFunction[Documents]):
    """
    This class is used to get embeddings for a list of texts using the HuggingFace API.
    It requires an API key and a model name. The default model name is "sentence-transformers/all-MiniLM-L6-v2".
    """

    def __init__(
        self, api_key: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
    ):
        """
        Initialize the HuggingFaceEmbeddingFunction.

        Args:
            api_key (str): Your API key for the HuggingFace API.
            model_name (str, optional): The name of the model to use for text embeddings. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
        """
        self._api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
        self._session = requests.Session()
        self._session.headers.update({"Authorization": f"Bearer {api_key}"})

    def __call__(self, input: Documents) -> Embeddings:
        """
        Get the embeddings for a list of texts.

        Args:
            texts (Documents): A list of texts to get embeddings for.

        Returns:
            Embeddings: The embeddings for the texts.

        Example:
            >>> hugging_face = HuggingFaceEmbeddingFunction(api_key="your_api_key")
            >>> texts = ["Hello, world!", "How are you?"]
            >>> embeddings = hugging_face(texts)
        """
        # Call HuggingFace Embedding API for each document
        return cast(
            Embeddings,
            self._session.post(
                self._api_url,
                json={"inputs": input, "options": {"wait_for_model": True}},
            ).json(),
        )


class JinaEmbeddingFunction(EmbeddingFunction[Documents]):
    """
    This class is used to get embeddings for a list of texts using the Jina AI API.
    It requires an API key and a model name. The default model name is "jina-embeddings-v2-base-en".
    """

    def __init__(self, api_key: str, model_name: str = "jina-embeddings-v2-base-en"):
        """
        Initialize the JinaEmbeddingFunction.

        Args:
            api_key (str): Your API key for the Jina AI API.
            model_name (str, optional): The name of the model to use for text embeddings. Defaults to "jina-embeddings-v2-base-en".
        """
        self._model_name = model_name
        self._api_url = "https://api.jina.ai/v1/embeddings"
        self._session = requests.Session()
        self._session.headers.update(
            {"Authorization": f"Bearer {api_key}", "Accept-Encoding": "identity"}
        )

    def __call__(self, input: Documents) -> Embeddings:
        """
        Get the embeddings for a list of texts.

        Args:
            texts (Documents): A list of texts to get embeddings for.

        Returns:
            Embeddings: The embeddings for the texts.

        Example:
            >>> jina_ai_fn = JinaEmbeddingFunction(api_key="your_api_key")
            >>> input = ["Hello, world!", "How are you?"]
            >>> embeddings = jina_ai_fn(input)
        """
        # Call Jina AI Embedding API
        resp = self._session.post(
            self._api_url, json={"input": input, "model": self._model_name}
        ).json()
        if "data" not in resp:
            raise RuntimeError(resp["detail"])

        embeddings = resp["data"]

        # Sort resulting embeddings by index
        sorted_embeddings = sorted(embeddings, key=lambda e: e["index"])

        # Return just the embeddings
        return cast(Embeddings, [result["embedding"] for result in sorted_embeddings])


class InstructorEmbeddingFunction(EmbeddingFunction[Documents]):
    # If you have a GPU with at least 6GB try model_name = "hkunlp/instructor-xl" and device = "cuda"
    # for a full list of options: https://github.com/HKUNLP/instructor-embedding#model-list
    def __init__(
        self,
        model_name: str = "hkunlp/instructor-base",
        device: str = "cpu",
        instruction: Optional[str] = None,
    ):
        try:
            from InstructorEmbedding import INSTRUCTOR
        except ImportError:
            raise ValueError(
                "The InstructorEmbedding python package is not installed. Please install it with `pip install InstructorEmbedding`"
            )
        self._model = INSTRUCTOR(model_name, device=device)
        self._instruction = instruction

    def __call__(self, input: Documents) -> Embeddings:
        if self._instruction is None:
            return cast(Embeddings, self._model.encode(input).tolist())

        texts_with_instructions = [[self._instruction, text] for text in input]

        return cast(Embeddings, self._model.encode(texts_with_instructions).tolist())


# In order to remove dependencies on sentence-transformers, which in turn depends on
# pytorch and sentence-piece we have created a default ONNX embedding function that
# implements the same functionality as "all-MiniLM-L6-v2" from sentence-transformers.
# visit https://github.com/chroma-core/onnx-embedding for the source code to generate
# and verify the ONNX model.
class ONNXMiniLM_L6_V2(EmbeddingFunction[Documents]):
    MODEL_NAME = "all-MiniLM-L6-v2"
    DOWNLOAD_PATH = Path.home() / ".cache" / "chroma" / "onnx_models" / MODEL_NAME
    EXTRACTED_FOLDER_NAME = "onnx"
    ARCHIVE_FILENAME = "onnx.tar.gz"
    MODEL_DOWNLOAD_URL = (
        "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz"
    )
    _MODEL_SHA256 = "913d7300ceae3b2dbc2c50d1de4baacab4be7b9380491c27fab7418616a16ec3"

    # https://github.com/python/mypy/issues/7291 mypy makes you type the constructor if
    # no args
    def __init__(self, preferred_providers: Optional[List[str]] = None) -> None:
        # Import dependencies on demand to mirror other embedding functions. This
        # breaks typechecking, thus the ignores.
        # convert the list to set for unique values
        if preferred_providers and not all(
            [isinstance(i, str) for i in preferred_providers]
        ):
            raise ValueError("Preferred providers must be a list of strings")
        # check for duplicate providers
        if preferred_providers and len(preferred_providers) != len(
            set(preferred_providers)
        ):
            raise ValueError("Preferred providers must be unique")
        self._preferred_providers = preferred_providers
        try:
            # Equivalent to import onnxruntime
            self.ort = importlib.import_module("onnxruntime")
        except ImportError:
            raise ValueError(
                "The onnxruntime python package is not installed. Please install it with `pip install onnxruntime`"
            )
        try:
            # Equivalent to from tokenizers import Tokenizer
            self.Tokenizer = importlib.import_module("tokenizers").Tokenizer
        except ImportError:
            raise ValueError(
                "The tokenizers python package is not installed. Please install it with `pip install tokenizers`"
            )
        try:
            # Equivalent to from tqdm import tqdm
            self.tqdm = importlib.import_module("tqdm").tqdm
        except ImportError:
            raise ValueError(
                "The tqdm python package is not installed. Please install it with `pip install tqdm`"
            )

    # Borrowed from https://gist.github.com/yanqd0/c13ed29e29432e3cf3e7c38467f42f51
    # Download with tqdm to preserve the sentence-transformers experience
    @retry(
        reraise=True,
        stop=stop_after_attempt(3),
        wait=wait_random(min=1, max=3),
        retry=retry_if_exception(lambda e: "does not match expected SHA256" in str(e)),
    )
    def _download(self, url: str, fname: str, chunk_size: int = 1024) -> None:
        resp = requests.get(url, stream=True)
        total = int(resp.headers.get("content-length", 0))
        with open(fname, "wb") as file, self.tqdm(
            desc=str(fname),
            total=total,
            unit="iB",
            unit_scale=True,
            unit_divisor=1024,
        ) as bar:
            for data in resp.iter_content(chunk_size=chunk_size):
                size = file.write(data)
                bar.update(size)
        if not _verify_sha256(fname, self._MODEL_SHA256):
            # if the integrity of the file is not verified, remove it
            os.remove(fname)
            raise ValueError(
                f"Downloaded file {fname} does not match expected SHA256 hash. Corrupted download or malicious file."
            )

    # Use pytorches default epsilon for division by zero
    # https://pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
    def _normalize(self, v: npt.NDArray) -> npt.NDArray:
        norm = np.linalg.norm(v, axis=1)
        norm[norm == 0] = 1e-12
        return cast(npt.NDArray, v / norm[:, np.newaxis])

    def _forward(self, documents: List[str], batch_size: int = 32) -> npt.NDArray:
        # We need to cast to the correct type because the type checker doesn't know that init_model_and_tokenizer will set the values
        self.tokenizer = cast(self.Tokenizer, self.tokenizer)
        self.model = cast(self.ort.InferenceSession, self.model)
        all_embeddings = []
        for i in range(0, len(documents), batch_size):
            batch = documents[i : i + batch_size]
            encoded = [self.tokenizer.encode(d) for d in batch]
            input_ids = np.array([e.ids for e in encoded])
            attention_mask = np.array([e.attention_mask for e in encoded])
            onnx_input = {
                "input_ids": np.array(input_ids, dtype=np.int64),
                "attention_mask": np.array(attention_mask, dtype=np.int64),
                "token_type_ids": np.array(
                    [np.zeros(len(e), dtype=np.int64) for e in input_ids],
                    dtype=np.int64,
                ),
            }
            model_output = self.model.run(None, onnx_input)
            last_hidden_state = model_output[0]
            # Perform mean pooling with attention weighting
            input_mask_expanded = np.broadcast_to(
                np.expand_dims(attention_mask, -1), last_hidden_state.shape
            )
            embeddings = np.sum(last_hidden_state * input_mask_expanded, 1) / np.clip(
                input_mask_expanded.sum(1), a_min=1e-9, a_max=None
            )
            embeddings = self._normalize(embeddings).astype(np.float32)
            all_embeddings.append(embeddings)
        return np.concatenate(all_embeddings)

    @cached_property
    def tokenizer(self) -> "Tokenizer":
        tokenizer = self.Tokenizer.from_file(
            os.path.join(
                self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME, "tokenizer.json"
            )
        )
        # max_seq_length = 256, for some reason sentence-transformers uses 256 even though the HF config has a max length of 128
        # https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/docs/_static/html/models_en_sentence_embeddings.html#LL480
        tokenizer.enable_truncation(max_length=256)
        tokenizer.enable_padding(pad_id=0, pad_token="[PAD]", length=256)
        return tokenizer

    @cached_property
    def model(self) -> "InferenceSession":
        if self._preferred_providers is None or len(self._preferred_providers) == 0:
            if len(self.ort.get_available_providers()) > 0:
                logger.debug(
                    f"WARNING: No ONNX providers provided, defaulting to available providers: "
                    f"{self.ort.get_available_providers()}"
                )
            self._preferred_providers = self.ort.get_available_providers()
        elif not set(self._preferred_providers).issubset(
            set(self.ort.get_available_providers())
        ):
            raise ValueError(
                f"Preferred providers must be subset of available providers: {self.ort.get_available_providers()}"
            )
        return self.ort.InferenceSession(
            os.path.join(self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME, "model.onnx"),
            # Since 1.9 onnyx runtime requires providers to be specified when there are multiple available - https://onnxruntime.ai/docs/api/python/api_summary.html
            # This is probably not ideal but will improve DX as no exceptions will be raised in multi-provider envs
            providers=self._preferred_providers,
        )

    def __call__(self, input: Documents) -> Embeddings:
        # Only download the model when it is actually used
        self._download_model_if_not_exists()
        return cast(Embeddings, self._forward(input).tolist())

    def _download_model_if_not_exists(self) -> None:
        onnx_files = [
            "config.json",
            "model.onnx",
            "special_tokens_map.json",
            "tokenizer_config.json",
            "tokenizer.json",
            "vocab.txt",
        ]
        extracted_folder = os.path.join(self.DOWNLOAD_PATH, self.EXTRACTED_FOLDER_NAME)
        onnx_files_exist = True
        for f in onnx_files:
            if not os.path.exists(os.path.join(extracted_folder, f)):
                onnx_files_exist = False
                break
        # Model is not downloaded yet
        if not onnx_files_exist:
            os.makedirs(self.DOWNLOAD_PATH, exist_ok=True)
            if not os.path.exists(
                os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME)
            ) or not _verify_sha256(
                os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME),
                self._MODEL_SHA256,
            ):
                self._download(
                    url=self.MODEL_DOWNLOAD_URL,
                    fname=os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME),
                )
            with tarfile.open(
                name=os.path.join(self.DOWNLOAD_PATH, self.ARCHIVE_FILENAME),
                mode="r:gz",
            ) as tar:
                tar.extractall(path=self.DOWNLOAD_PATH)


def DefaultEmbeddingFunction() -> Optional[EmbeddingFunction[Documents]]:
    if is_thin_client:
        return None
    else:
        return ONNXMiniLM_L6_V2()


class GooglePalmEmbeddingFunction(EmbeddingFunction[Documents]):
    """To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a PaLM API key."""

    def __init__(self, api_key: str, model_name: str = "models/embedding-gecko-001"):
        if not api_key:
            raise ValueError("Please provide a PaLM API key.")

        if not model_name:
            raise ValueError("Please provide the model name.")

        try:
            import google.generativeai as palm
        except ImportError:
            raise ValueError(
                "The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`"
            )

        palm.configure(api_key=api_key)
        self._palm = palm
        self._model_name = model_name

    def __call__(self, input: Documents) -> Embeddings:
        return [
            self._palm.generate_embeddings(model=self._model_name, text=text)[
                "embedding"
            ]
            for text in input
        ]


class GoogleGenerativeAiEmbeddingFunction(EmbeddingFunction[Documents]):
    """To use this EmbeddingFunction, you must have the google.generativeai Python package installed and have a Google API key."""

    """Use RETRIEVAL_DOCUMENT for the task_type for embedding, and RETRIEVAL_QUERY for the task_type for retrieval."""

    def __init__(
        self,
        api_key: str,
        model_name: str = "models/embedding-001",
        task_type: str = "RETRIEVAL_DOCUMENT",
    ):
        if not api_key:
            raise ValueError("Please provide a Google API key.")

        if not model_name:
            raise ValueError("Please provide the model name.")

        try:
            import google.generativeai as genai
        except ImportError:
            raise ValueError(
                "The Google Generative AI python package is not installed. Please install it with `pip install google-generativeai`"
            )

        genai.configure(api_key=api_key)
        self._genai = genai
        self._model_name = model_name
        self._task_type = task_type
        self._task_title = None
        if self._task_type == "RETRIEVAL_DOCUMENT":
            self._task_title = "Embedding of single string"

    def __call__(self, input: Documents) -> Embeddings:
        return [
            self._genai.embed_content(
                model=self._model_name,
                content=text,
                task_type=self._task_type,
                title=self._task_title,
            )["embedding"]
            for text in input
        ]


class GoogleVertexEmbeddingFunction(EmbeddingFunction[Documents]):
    # Follow API Quickstart for Google Vertex AI
    # https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/api-quickstart
    # Information about the text embedding modules in Google Vertex AI
    # https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    def __init__(
        self,
        api_key: str,
        model_name: str = "textembedding-gecko",
        project_id: str = "cloud-large-language-models",
        region: str = "us-central1",
    ):
        self._api_url = f"https://{region}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{region}/publishers/goole/models/{model_name}:predict"
        self._session = requests.Session()
        self._session.headers.update({"Authorization": f"Bearer {api_key}"})

    def __call__(self, input: Documents) -> Embeddings:
        embeddings = []
        for text in input:
            response = self._session.post(
                self._api_url, json={"instances": [{"content": text}]}
            ).json()

            if "predictions" in response:
                embeddings.append(response["predictions"]["embeddings"]["values"])

        return embeddings


class OpenCLIPEmbeddingFunction(EmbeddingFunction[Union[Documents, Images]]):
    def __init__(
        self, model_name: str = "ViT-B-32", checkpoint: str = "laion2b_s34b_b79k"
    ) -> None:
        try:
            import open_clip
        except ImportError:
            raise ValueError(
                "The open_clip python package is not installed. Please install it with `pip install open-clip-torch`. https://github.com/mlfoundations/open_clip"
            )
        try:
            self._torch = importlib.import_module("torch")
        except ImportError:
            raise ValueError(
                "The torch python package is not installed. Please install it with `pip install torch`"
            )

        try:
            self._PILImage = importlib.import_module("PIL.Image")
        except ImportError:
            raise ValueError(
                "The PIL python package is not installed. Please install it with `pip install pillow`"
            )

        model, _, preprocess = open_clip.create_model_and_transforms(
            model_name=model_name, pretrained=checkpoint
        )
        self._model = model
        self._preprocess = preprocess
        self._tokenizer = open_clip.get_tokenizer(model_name=model_name)

    def _encode_image(self, image: Image) -> Embedding:
        pil_image = self._PILImage.fromarray(image)
        with self._torch.no_grad():
            image_features = self._model.encode_image(
                self._preprocess(pil_image).unsqueeze(0)
            )
            image_features /= image_features.norm(dim=-1, keepdim=True)
            return cast(Embedding, image_features.squeeze().tolist())

    def _encode_text(self, text: Document) -> Embedding:
        with self._torch.no_grad():
            text_features = self._model.encode_text(self._tokenizer(text))
            text_features /= text_features.norm(dim=-1, keepdim=True)
            return cast(Embedding, text_features.squeeze().tolist())

    def __call__(self, input: Union[Documents, Images]) -> Embeddings:
        embeddings: Embeddings = []
        for item in input:
            if is_image(item):
                embeddings.append(self._encode_image(cast(Image, item)))
            elif is_document(item):
                embeddings.append(self._encode_text(cast(Document, item)))
        return embeddings


class AmazonBedrockEmbeddingFunction(EmbeddingFunction[Documents]):
    def __init__(
        self,
        session: "boto3.Session",  # noqa: F821 # Quote for forward reference
        model_name: str = "amazon.titan-embed-text-v1",
        **kwargs: Any,
    ):
        """Initialize AmazonBedrockEmbeddingFunction.

        Args:
            session (boto3.Session): The boto3 session to use.
            model_name (str, optional): Identifier of the model, defaults to "amazon.titan-embed-text-v1"
            **kwargs: Additional arguments to pass to the boto3 client.

        Example:
            >>> import boto3
            >>> session = boto3.Session(profile_name="profile", region_name="us-east-1")
            >>> bedrock = AmazonBedrockEmbeddingFunction(session=session)
            >>> texts = ["Hello, world!", "How are you?"]
            >>> embeddings = bedrock(texts)
        """

        self._model_name = model_name

        self._client = session.client(
            service_name="bedrock-runtime",
            **kwargs,
        )

    def __call__(self, input: Documents) -> Embeddings:
        accept = "application/json"
        content_type = "application/json"
        embeddings = []
        for text in input:
            input_body = {"inputText": text}
            body = json.dumps(input_body)
            response = self._client.invoke_model(
                body=body,
                modelId=self._model_name,
                accept=accept,
                contentType=content_type,
            )
            embedding = json.load(response.get("body")).get("embedding")
            embeddings.append(embedding)
        return embeddings


class HuggingFaceEmbeddingServer(EmbeddingFunction[Documents]):
    """
    This class is used to get embeddings for a list of texts using the HuggingFace Embedding server (https://github.com/huggingface/text-embeddings-inference).
    The embedding model is configured in the server.
    """

    def __init__(self, url: str):
        """
        Initialize the HuggingFaceEmbeddingServer.

        Args:
            url (str): The URL of the HuggingFace Embedding Server.
        """
        try:
            import requests
        except ImportError:
            raise ValueError(
                "The requests python package is not installed. Please install it with `pip install requests`"
            )
        self._api_url = f"{url}"
        self._session = requests.Session()

    def __call__(self, input: Documents) -> Embeddings:
        """
        Get the embeddings for a list of texts.

        Args:
            texts (Documents): A list of texts to get embeddings for.

        Returns:
            Embeddings: The embeddings for the texts.

        Example:
            >>> hugging_face = HuggingFaceEmbeddingServer(url="http://localhost:8080/embed")
            >>> texts = ["Hello, world!", "How are you?"]
            >>> embeddings = hugging_face(texts)
        """
        # Call HuggingFace Embedding Server API for each document
        return cast(
            Embeddings, self._session.post(self._api_url, json={"inputs": input}).json()
        )


# List of all classes in this module
_classes = [
    name
    for name, obj in inspect.getmembers(sys.modules[__name__], inspect.isclass)
    if obj.__module__ == __name__
]


def get_builtins() -> List[str]:
    return _classes