Spaces:
Running
Running
File size: 4,790 Bytes
287a0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from typing import Optional, Union, Sequence, Dict, Mapping, List
from typing_extensions import Literal, TypedDict, TypeVar
from uuid import UUID
from enum import Enum
Metadata = Mapping[str, Union[str, int, float, bool]]
UpdateMetadata = Mapping[str, Union[int, float, str, bool, None]]
# Namespaced Names are mechanically just strings, but we use this type to indicate that
# the intent is for the value to be globally unique and semantically meaningful.
NamespacedName = str
class ScalarEncoding(Enum):
FLOAT32 = "FLOAT32"
INT32 = "INT32"
class SegmentScope(Enum):
VECTOR = "VECTOR"
METADATA = "METADATA"
class Collection(TypedDict):
id: UUID
name: str
topic: str
metadata: Optional[Metadata]
dimension: Optional[int]
tenant: str
database: str
class Database(TypedDict):
id: UUID
name: str
tenant: str
class Tenant(TypedDict):
name: str
class Segment(TypedDict):
id: UUID
type: NamespacedName
scope: SegmentScope
# If a segment has a topic, it implies that this segment is a consumer of the topic
# and indexes the contents of the topic.
topic: Optional[str]
# If a segment has a collection, it implies that this segment implements the full
# collection and can be used to service queries (for it's given scope.)
collection: Optional[UUID]
metadata: Optional[Metadata]
# SeqID can be one of three types of value in our current and future plans:
# 1. A Pulsar MessageID encoded as a 192-bit integer
# 2. A Pulsar MessageIndex (a 64-bit integer)
# 3. A SQL RowID (a 64-bit integer)
# All three of these types can be expressed as a Python int, so that is the type we
# use in the internal Python API. However, care should be taken that the larger 192-bit
# values are stored correctly when persisting to DBs.
SeqId = int
class Operation(Enum):
ADD = "ADD"
UPDATE = "UPDATE"
UPSERT = "UPSERT"
DELETE = "DELETE"
Vector = Union[Sequence[float], Sequence[int]]
class VectorEmbeddingRecord(TypedDict):
id: str
seq_id: SeqId
embedding: Vector
class MetadataEmbeddingRecord(TypedDict):
id: str
seq_id: SeqId
metadata: Optional[Metadata]
class EmbeddingRecord(TypedDict):
id: str
seq_id: SeqId
embedding: Optional[Vector]
encoding: Optional[ScalarEncoding]
metadata: Optional[UpdateMetadata]
operation: Operation
# The collection the operation is being performed on
# This is optional because in the single node version,
# topics are 1:1 with collections. So consumers of the ingest queue
# implicitly know this mapping. However, in the multi-node version,
# topics are shared between collections, so we need to explicitly
# specify the collection.
# For backwards compatability reasons, we can't make this a required field on
# single node, since data written with older versions of the code won't be able to
# populate it.
collection_id: Optional[UUID]
class SubmitEmbeddingRecord(TypedDict):
id: str
embedding: Optional[Vector]
encoding: Optional[ScalarEncoding]
metadata: Optional[UpdateMetadata]
operation: Operation
collection_id: UUID # The collection the operation is being performed on
class VectorQuery(TypedDict):
"""A KNN/ANN query"""
vectors: Sequence[Vector]
k: int
allowed_ids: Optional[Sequence[str]]
include_embeddings: bool
options: Optional[Dict[str, Union[str, int, float, bool]]]
class VectorQueryResult(TypedDict):
"""A KNN/ANN query result"""
id: str
seq_id: SeqId
distance: float
embedding: Optional[Vector]
# Metadata Query Grammar
LiteralValue = Union[str, int, float, bool]
LogicalOperator = Union[Literal["$and"], Literal["$or"]]
WhereOperator = Union[
Literal["$gt"],
Literal["$gte"],
Literal["$lt"],
Literal["$lte"],
Literal["$ne"],
Literal["$eq"],
]
InclusionExclusionOperator = Union[Literal["$in"], Literal["$nin"]]
OperatorExpression = Union[
Dict[Union[WhereOperator, LogicalOperator], LiteralValue],
Dict[InclusionExclusionOperator, List[LiteralValue]],
]
Where = Dict[
Union[str, LogicalOperator], Union[LiteralValue, OperatorExpression, List["Where"]]
]
WhereDocumentOperator = Union[
Literal["$contains"], Literal["$not_contains"], LogicalOperator
]
WhereDocument = Dict[WhereDocumentOperator, Union[str, List["WhereDocument"]]]
class Unspecified:
"""A sentinel value used to indicate that a value should not be updated"""
_instance: Optional["Unspecified"] = None
def __new__(cls) -> "Unspecified":
if cls._instance is None:
cls._instance = super(Unspecified, cls).__new__(cls)
return cls._instance
T = TypeVar("T")
OptionalArgument = Union[T, Unspecified]
|