File size: 17,215 Bytes
287a0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import pytest
import logging
import hypothesis.strategies as st
from hypothesis import given
from typing import Dict, Set, cast, Union, DefaultDict, Any, List
from dataclasses import dataclass
from chromadb.api.types import ID, Include, IDs, validate_embeddings
import chromadb.errors as errors
from chromadb.api import ServerAPI
from chromadb.api.models.Collection import Collection
import chromadb.test.property.strategies as strategies
from hypothesis.stateful import (
    Bundle,
    RuleBasedStateMachine,
    MultipleResults,
    rule,
    initialize,
    precondition,
    consumes,
    run_state_machine_as_test,
    multiple,
    invariant,
)
from collections import defaultdict
import chromadb.test.property.invariants as invariants
import numpy as np


traces: DefaultDict[str, int] = defaultdict(lambda: 0)


def trace(key: str) -> None:
    global traces
    traces[key] += 1


def print_traces() -> None:
    global traces
    for key, value in traces.items():
        print(f"{key}: {value}")


dtype_shared_st: st.SearchStrategy[
    Union[np.float16, np.float32, np.float64]
] = st.shared(st.sampled_from(strategies.float_types), key="dtype")

dimension_shared_st: st.SearchStrategy[int] = st.shared(
    st.integers(min_value=2, max_value=2048), key="dimension"
)


@dataclass
class EmbeddingStateMachineStates:
    initialize = "initialize"
    add_embeddings = "add_embeddings"
    delete_by_ids = "delete_by_ids"
    update_embeddings = "update_embeddings"
    upsert_embeddings = "upsert_embeddings"


collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll")


class EmbeddingStateMachine(RuleBasedStateMachine):
    collection: Collection
    embedding_ids: Bundle[ID] = Bundle("embedding_ids")

    def __init__(self, api: ServerAPI):
        super().__init__()
        self.api = api
        self._rules_strategy = strategies.DeterministicRuleStrategy(self)  # type: ignore

    @initialize(collection=collection_st)  # type: ignore
    def initialize(self, collection: strategies.Collection):
        self.api.reset()
        self.collection = self.api.create_collection(
            name=collection.name,
            metadata=collection.metadata,
            embedding_function=collection.embedding_function,
        )
        self.embedding_function = collection.embedding_function
        trace("init")
        self.on_state_change(EmbeddingStateMachineStates.initialize)

        self.record_set_state = strategies.StateMachineRecordSet(
            ids=[], metadatas=[], documents=[], embeddings=[]
        )

    @rule(target=embedding_ids, record_set=strategies.recordsets(collection_st))
    def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]:
        trace("add_embeddings")
        self.on_state_change(EmbeddingStateMachineStates.add_embeddings)

        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )

        if len(normalized_record_set["ids"]) > 0:
            trace("add_more_embeddings")

        if not invariants.is_metadata_valid(normalized_record_set):
            with pytest.raises(Exception):
                self.collection.add(**normalized_record_set)
            return multiple()

        intersection = set(normalized_record_set["ids"]).intersection(
            self.record_set_state["ids"]
        )
        if len(intersection) > 0:
            # Partially apply the non-duplicative records to the state
            new_ids = list(set(normalized_record_set["ids"]).difference(intersection))
            indices = [normalized_record_set["ids"].index(id) for id in new_ids]
            filtered_record_set: strategies.NormalizedRecordSet = {
                "ids": [normalized_record_set["ids"][i] for i in indices],
                "metadatas": [normalized_record_set["metadatas"][i] for i in indices]
                if normalized_record_set["metadatas"]
                else None,
                "documents": [normalized_record_set["documents"][i] for i in indices]
                if normalized_record_set["documents"]
                else None,
                "embeddings": [normalized_record_set["embeddings"][i] for i in indices]
                if normalized_record_set["embeddings"]
                else None,
            }
            self.collection.add(**normalized_record_set)
            self._upsert_embeddings(cast(strategies.RecordSet, filtered_record_set))
            return multiple(*filtered_record_set["ids"])

        else:
            self.collection.add(**normalized_record_set)
            self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set))
            return multiple(*normalized_record_set["ids"])

    @precondition(lambda self: len(self.record_set_state["ids"]) > 20)
    @rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20))
    def delete_by_ids(self, ids: IDs) -> None:
        trace("remove embeddings")
        self.on_state_change(EmbeddingStateMachineStates.delete_by_ids)
        indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids]

        self.collection.delete(ids=ids)
        self._remove_embeddings(set(indices_to_remove))

    # Removing the precondition causes the tests to frequently fail as "unsatisfiable"
    # Using a value < 5 causes retries and lowers the number of valid samples
    @precondition(lambda self: len(self.record_set_state["ids"]) >= 5)
    @rule(
        record_set=strategies.recordsets(
            collection_strategy=collection_st,
            id_strategy=embedding_ids,
            min_size=1,
            max_size=5,
        )
    )
    def update_embeddings(self, record_set: strategies.RecordSet) -> None:
        trace("update embeddings")
        self.on_state_change(EmbeddingStateMachineStates.update_embeddings)

        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )
        if not invariants.is_metadata_valid(normalized_record_set):
            with pytest.raises(Exception):
                self.collection.update(**normalized_record_set)
            return

        self.collection.update(**record_set)
        self._upsert_embeddings(record_set)

    # Using a value < 3 causes more retries and lowers the number of valid samples
    @precondition(lambda self: len(self.record_set_state["ids"]) >= 3)
    @rule(
        record_set=strategies.recordsets(
            collection_strategy=collection_st,
            id_strategy=st.one_of(embedding_ids, strategies.safe_text),
            min_size=1,
            max_size=5,
        )
    )
    def upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
        trace("upsert embeddings")
        self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings)

        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )
        if not invariants.is_metadata_valid(normalized_record_set):
            with pytest.raises(Exception):
                self.collection.upsert(**normalized_record_set)
            return

        self.collection.upsert(**record_set)
        self._upsert_embeddings(record_set)

    @invariant()
    def count(self) -> None:
        invariants.count(
            self.collection, cast(strategies.RecordSet, self.record_set_state)
        )

    @invariant()
    def no_duplicates(self) -> None:
        invariants.no_duplicates(self.collection)

    @invariant()
    def ann_accuracy(self) -> None:
        invariants.ann_accuracy(
            collection=self.collection,
            record_set=cast(strategies.RecordSet, self.record_set_state),
            min_recall=0.95,
            embedding_function=self.embedding_function,
        )

    @invariant()
    def fields_match(self) -> None:
        self.record_set_state = cast(strategies.RecordSet, self.record_set_state)
        invariants.embeddings_match(self.collection, self.record_set_state)
        invariants.metadatas_match(self.collection, self.record_set_state)
        invariants.documents_match(self.collection, self.record_set_state)

    def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )
        for idx, id in enumerate(normalized_record_set["ids"]):
            # Update path
            if id in self.record_set_state["ids"]:
                target_idx = self.record_set_state["ids"].index(id)
                if normalized_record_set["embeddings"] is not None:
                    self.record_set_state["embeddings"][
                        target_idx
                    ] = normalized_record_set["embeddings"][idx]
                else:
                    assert normalized_record_set["documents"] is not None
                    assert self.embedding_function is not None
                    self.record_set_state["embeddings"][
                        target_idx
                    ] = self.embedding_function(
                        [normalized_record_set["documents"][idx]]
                    )[
                        0
                    ]
                if normalized_record_set["metadatas"] is not None:
                    # Sqlite merges the metadata, as opposed to old
                    # implementations which overwrites it
                    record_set_state = self.record_set_state["metadatas"][target_idx]
                    if record_set_state is not None:
                        record_set_state = cast(
                            Dict[str, Union[str, int, float]], record_set_state
                        )
                        record_set_state.update(normalized_record_set["metadatas"][idx])
                if normalized_record_set["documents"] is not None:
                    self.record_set_state["documents"][
                        target_idx
                    ] = normalized_record_set["documents"][idx]
            else:
                # Add path
                self.record_set_state["ids"].append(id)
                if normalized_record_set["embeddings"] is not None:
                    self.record_set_state["embeddings"].append(
                        normalized_record_set["embeddings"][idx]
                    )
                else:
                    assert self.embedding_function is not None
                    assert normalized_record_set["documents"] is not None
                    self.record_set_state["embeddings"].append(
                        self.embedding_function(
                            [normalized_record_set["documents"][idx]]
                        )[0]
                    )
                if normalized_record_set["metadatas"] is not None:
                    self.record_set_state["metadatas"].append(
                        normalized_record_set["metadatas"][idx]
                    )
                else:
                    self.record_set_state["metadatas"].append(None)
                if normalized_record_set["documents"] is not None:
                    self.record_set_state["documents"].append(
                        normalized_record_set["documents"][idx]
                    )
                else:
                    self.record_set_state["documents"].append(None)

    def _remove_embeddings(self, indices_to_remove: Set[int]) -> None:
        indices_list = list(indices_to_remove)
        indices_list.sort(reverse=True)

        for i in indices_list:
            del self.record_set_state["ids"][i]
            del self.record_set_state["embeddings"][i]
            del self.record_set_state["metadatas"][i]
            del self.record_set_state["documents"][i]

    def on_state_change(self, new_state: str) -> None:
        pass


def test_embeddings_state(caplog: pytest.LogCaptureFixture, api: ServerAPI) -> None:
    caplog.set_level(logging.ERROR)
    run_state_machine_as_test(lambda: EmbeddingStateMachine(api))  # type: ignore
    print_traces()


def test_multi_add(api: ServerAPI) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    coll.add(ids=["a"], embeddings=[[0.0]])
    assert coll.count() == 1

    # after the sqlite refactor - add silently ignores duplicates, no exception is raised
    # partial adds are supported - i.e we will add whatever we can in the request
    coll.add(ids=["a"], embeddings=[[0.0]])

    assert coll.count() == 1

    results = coll.get()
    assert results["ids"] == ["a"]

    coll.delete(ids=["a"])
    assert coll.count() == 0


def test_dup_add(api: ServerAPI) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    with pytest.raises(errors.DuplicateIDError):
        coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]])
    with pytest.raises(errors.DuplicateIDError):
        coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]])


def test_query_without_add(api: ServerAPI) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    fields: Include = ["documents", "metadatas", "embeddings", "distances"]
    N = np.random.randint(1, 2000)
    K = np.random.randint(1, 100)
    results = coll.query(
        query_embeddings=np.random.random((N, K)).tolist(), include=fields
    )
    for field in fields:
        field_results = results[field]
        assert field_results is not None
        assert all([len(result) == 0 for result in field_results])


def test_get_non_existent(api: ServerAPI) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    result = coll.get(ids=["a"], include=["documents", "metadatas", "embeddings"])
    assert len(result["ids"]) == 0
    assert len(result["metadatas"]) == 0
    assert len(result["documents"]) == 0
    assert len(result["embeddings"]) == 0


# TODO: Use SQL escaping correctly internally
@pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems")
def test_escape_chars_in_ids(api: ServerAPI) -> None:
    api.reset()
    id = "\x1f"
    coll = api.create_collection(name="foo")
    coll.add(ids=[id], embeddings=[[0.0]])
    assert coll.count() == 1
    coll.delete(ids=[id])
    assert coll.count() == 0


@pytest.mark.parametrize(
    "kwargs",
    [
        {},
        {"ids": []},
        {"where": {}},
        {"where_document": {}},
        {"where_document": {}, "where": {}},
    ],
)
def test_delete_empty_fails(api: ServerAPI, kwargs: dict):
    api.reset()
    coll = api.create_collection(name="foo")
    with pytest.raises(Exception) as e:
        coll.delete(**kwargs)
    assert "You must provide either ids, where, or where_document to delete." in str(e)


@pytest.mark.parametrize(
    "kwargs",
    [
        {"ids": ["foo"]},
        {"where": {"foo": "bar"}},
        {"where_document": {"$contains": "bar"}},
        {"ids": ["foo"], "where": {"foo": "bar"}},
        {"ids": ["foo"], "where_document": {"$contains": "bar"}},
        {
            "ids": ["foo"],
            "where": {"foo": "bar"},
            "where_document": {"$contains": "bar"},
        },
    ],
)
def test_delete_success(api: ServerAPI, kwargs: dict):
    api.reset()
    coll = api.create_collection(name="foo")
    # Should not raise
    coll.delete(**kwargs)


@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_for_compatible_types(
    supported_types: List[Any],
) -> None:
    embds = strategies.create_embeddings(10, 10, supported_types)
    validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
    assert all(
        [
            isinstance(value, list)
            and all(
                [
                    isinstance(vec, (int, float)) and not isinstance(vec, bool)
                    for vec in value
                ]
            )
            for value in validated_embeddings
        ]
    )


@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_with_ndarray(
    supported_types: List[Any],
) -> None:
    embds = strategies.create_embeddings_ndarray(10, 10, supported_types)
    validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
    assert all(
        [
            isinstance(value, list)
            and all(
                [
                    isinstance(vec, (int, float)) and not isinstance(vec, bool)
                    for vec in value
                ]
            )
            for value in validated_embeddings
        ]
    )


@given(unsupported_types=st.sampled_from([str, bool]))
def test_autocasting_validate_embeddings_incompatible_types(
    unsupported_types: List[Any],
) -> None:
    embds = strategies.create_embeddings(10, 10, unsupported_types)
    with pytest.raises(ValueError) as e:
        validate_embeddings(Collection._normalize_embeddings(embds))

    assert "Expected each value in the embedding to be a int or float" in str(e)


def test_0dim_embedding_validation() -> None:
    embds = [[]]
    with pytest.raises(ValueError) as e:
        validate_embeddings(embds)
    assert "Expected each embedding in the embeddings to be a non-empty list" in str(e)