Spaces:
Sleeping
Sleeping
File size: 17,215 Bytes
287a0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import pytest
import logging
import hypothesis.strategies as st
from hypothesis import given
from typing import Dict, Set, cast, Union, DefaultDict, Any, List
from dataclasses import dataclass
from chromadb.api.types import ID, Include, IDs, validate_embeddings
import chromadb.errors as errors
from chromadb.api import ServerAPI
from chromadb.api.models.Collection import Collection
import chromadb.test.property.strategies as strategies
from hypothesis.stateful import (
Bundle,
RuleBasedStateMachine,
MultipleResults,
rule,
initialize,
precondition,
consumes,
run_state_machine_as_test,
multiple,
invariant,
)
from collections import defaultdict
import chromadb.test.property.invariants as invariants
import numpy as np
traces: DefaultDict[str, int] = defaultdict(lambda: 0)
def trace(key: str) -> None:
global traces
traces[key] += 1
def print_traces() -> None:
global traces
for key, value in traces.items():
print(f"{key}: {value}")
dtype_shared_st: st.SearchStrategy[
Union[np.float16, np.float32, np.float64]
] = st.shared(st.sampled_from(strategies.float_types), key="dtype")
dimension_shared_st: st.SearchStrategy[int] = st.shared(
st.integers(min_value=2, max_value=2048), key="dimension"
)
@dataclass
class EmbeddingStateMachineStates:
initialize = "initialize"
add_embeddings = "add_embeddings"
delete_by_ids = "delete_by_ids"
update_embeddings = "update_embeddings"
upsert_embeddings = "upsert_embeddings"
collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll")
class EmbeddingStateMachine(RuleBasedStateMachine):
collection: Collection
embedding_ids: Bundle[ID] = Bundle("embedding_ids")
def __init__(self, api: ServerAPI):
super().__init__()
self.api = api
self._rules_strategy = strategies.DeterministicRuleStrategy(self) # type: ignore
@initialize(collection=collection_st) # type: ignore
def initialize(self, collection: strategies.Collection):
self.api.reset()
self.collection = self.api.create_collection(
name=collection.name,
metadata=collection.metadata,
embedding_function=collection.embedding_function,
)
self.embedding_function = collection.embedding_function
trace("init")
self.on_state_change(EmbeddingStateMachineStates.initialize)
self.record_set_state = strategies.StateMachineRecordSet(
ids=[], metadatas=[], documents=[], embeddings=[]
)
@rule(target=embedding_ids, record_set=strategies.recordsets(collection_st))
def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]:
trace("add_embeddings")
self.on_state_change(EmbeddingStateMachineStates.add_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if len(normalized_record_set["ids"]) > 0:
trace("add_more_embeddings")
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.add(**normalized_record_set)
return multiple()
intersection = set(normalized_record_set["ids"]).intersection(
self.record_set_state["ids"]
)
if len(intersection) > 0:
# Partially apply the non-duplicative records to the state
new_ids = list(set(normalized_record_set["ids"]).difference(intersection))
indices = [normalized_record_set["ids"].index(id) for id in new_ids]
filtered_record_set: strategies.NormalizedRecordSet = {
"ids": [normalized_record_set["ids"][i] for i in indices],
"metadatas": [normalized_record_set["metadatas"][i] for i in indices]
if normalized_record_set["metadatas"]
else None,
"documents": [normalized_record_set["documents"][i] for i in indices]
if normalized_record_set["documents"]
else None,
"embeddings": [normalized_record_set["embeddings"][i] for i in indices]
if normalized_record_set["embeddings"]
else None,
}
self.collection.add(**normalized_record_set)
self._upsert_embeddings(cast(strategies.RecordSet, filtered_record_set))
return multiple(*filtered_record_set["ids"])
else:
self.collection.add(**normalized_record_set)
self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set))
return multiple(*normalized_record_set["ids"])
@precondition(lambda self: len(self.record_set_state["ids"]) > 20)
@rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20))
def delete_by_ids(self, ids: IDs) -> None:
trace("remove embeddings")
self.on_state_change(EmbeddingStateMachineStates.delete_by_ids)
indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids]
self.collection.delete(ids=ids)
self._remove_embeddings(set(indices_to_remove))
# Removing the precondition causes the tests to frequently fail as "unsatisfiable"
# Using a value < 5 causes retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 5)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=embedding_ids,
min_size=1,
max_size=5,
)
)
def update_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("update embeddings")
self.on_state_change(EmbeddingStateMachineStates.update_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.update(**normalized_record_set)
return
self.collection.update(**record_set)
self._upsert_embeddings(record_set)
# Using a value < 3 causes more retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 3)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=st.one_of(embedding_ids, strategies.safe_text),
min_size=1,
max_size=5,
)
)
def upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("upsert embeddings")
self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.upsert(**normalized_record_set)
return
self.collection.upsert(**record_set)
self._upsert_embeddings(record_set)
@invariant()
def count(self) -> None:
invariants.count(
self.collection, cast(strategies.RecordSet, self.record_set_state)
)
@invariant()
def no_duplicates(self) -> None:
invariants.no_duplicates(self.collection)
@invariant()
def ann_accuracy(self) -> None:
invariants.ann_accuracy(
collection=self.collection,
record_set=cast(strategies.RecordSet, self.record_set_state),
min_recall=0.95,
embedding_function=self.embedding_function,
)
@invariant()
def fields_match(self) -> None:
self.record_set_state = cast(strategies.RecordSet, self.record_set_state)
invariants.embeddings_match(self.collection, self.record_set_state)
invariants.metadatas_match(self.collection, self.record_set_state)
invariants.documents_match(self.collection, self.record_set_state)
def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
for idx, id in enumerate(normalized_record_set["ids"]):
# Update path
if id in self.record_set_state["ids"]:
target_idx = self.record_set_state["ids"].index(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"][
target_idx
] = normalized_record_set["embeddings"][idx]
else:
assert normalized_record_set["documents"] is not None
assert self.embedding_function is not None
self.record_set_state["embeddings"][
target_idx
] = self.embedding_function(
[normalized_record_set["documents"][idx]]
)[
0
]
if normalized_record_set["metadatas"] is not None:
# Sqlite merges the metadata, as opposed to old
# implementations which overwrites it
record_set_state = self.record_set_state["metadatas"][target_idx]
if record_set_state is not None:
record_set_state = cast(
Dict[str, Union[str, int, float]], record_set_state
)
record_set_state.update(normalized_record_set["metadatas"][idx])
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"][
target_idx
] = normalized_record_set["documents"][idx]
else:
# Add path
self.record_set_state["ids"].append(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"].append(
normalized_record_set["embeddings"][idx]
)
else:
assert self.embedding_function is not None
assert normalized_record_set["documents"] is not None
self.record_set_state["embeddings"].append(
self.embedding_function(
[normalized_record_set["documents"][idx]]
)[0]
)
if normalized_record_set["metadatas"] is not None:
self.record_set_state["metadatas"].append(
normalized_record_set["metadatas"][idx]
)
else:
self.record_set_state["metadatas"].append(None)
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"].append(
normalized_record_set["documents"][idx]
)
else:
self.record_set_state["documents"].append(None)
def _remove_embeddings(self, indices_to_remove: Set[int]) -> None:
indices_list = list(indices_to_remove)
indices_list.sort(reverse=True)
for i in indices_list:
del self.record_set_state["ids"][i]
del self.record_set_state["embeddings"][i]
del self.record_set_state["metadatas"][i]
del self.record_set_state["documents"][i]
def on_state_change(self, new_state: str) -> None:
pass
def test_embeddings_state(caplog: pytest.LogCaptureFixture, api: ServerAPI) -> None:
caplog.set_level(logging.ERROR)
run_state_machine_as_test(lambda: EmbeddingStateMachine(api)) # type: ignore
print_traces()
def test_multi_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
# after the sqlite refactor - add silently ignores duplicates, no exception is raised
# partial adds are supported - i.e we will add whatever we can in the request
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
results = coll.get()
assert results["ids"] == ["a"]
coll.delete(ids=["a"])
assert coll.count() == 0
def test_dup_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
with pytest.raises(errors.DuplicateIDError):
coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]])
with pytest.raises(errors.DuplicateIDError):
coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]])
def test_query_without_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
fields: Include = ["documents", "metadatas", "embeddings", "distances"]
N = np.random.randint(1, 2000)
K = np.random.randint(1, 100)
results = coll.query(
query_embeddings=np.random.random((N, K)).tolist(), include=fields
)
for field in fields:
field_results = results[field]
assert field_results is not None
assert all([len(result) == 0 for result in field_results])
def test_get_non_existent(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
result = coll.get(ids=["a"], include=["documents", "metadatas", "embeddings"])
assert len(result["ids"]) == 0
assert len(result["metadatas"]) == 0
assert len(result["documents"]) == 0
assert len(result["embeddings"]) == 0
# TODO: Use SQL escaping correctly internally
@pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems")
def test_escape_chars_in_ids(api: ServerAPI) -> None:
api.reset()
id = "\x1f"
coll = api.create_collection(name="foo")
coll.add(ids=[id], embeddings=[[0.0]])
assert coll.count() == 1
coll.delete(ids=[id])
assert coll.count() == 0
@pytest.mark.parametrize(
"kwargs",
[
{},
{"ids": []},
{"where": {}},
{"where_document": {}},
{"where_document": {}, "where": {}},
],
)
def test_delete_empty_fails(api: ServerAPI, kwargs: dict):
api.reset()
coll = api.create_collection(name="foo")
with pytest.raises(Exception) as e:
coll.delete(**kwargs)
assert "You must provide either ids, where, or where_document to delete." in str(e)
@pytest.mark.parametrize(
"kwargs",
[
{"ids": ["foo"]},
{"where": {"foo": "bar"}},
{"where_document": {"$contains": "bar"}},
{"ids": ["foo"], "where": {"foo": "bar"}},
{"ids": ["foo"], "where_document": {"$contains": "bar"}},
{
"ids": ["foo"],
"where": {"foo": "bar"},
"where_document": {"$contains": "bar"},
},
],
)
def test_delete_success(api: ServerAPI, kwargs: dict):
api.reset()
coll = api.create_collection(name="foo")
# Should not raise
coll.delete(**kwargs)
@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_for_compatible_types(
supported_types: List[Any],
) -> None:
embds = strategies.create_embeddings(10, 10, supported_types)
validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
assert all(
[
isinstance(value, list)
and all(
[
isinstance(vec, (int, float)) and not isinstance(vec, bool)
for vec in value
]
)
for value in validated_embeddings
]
)
@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_with_ndarray(
supported_types: List[Any],
) -> None:
embds = strategies.create_embeddings_ndarray(10, 10, supported_types)
validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
assert all(
[
isinstance(value, list)
and all(
[
isinstance(vec, (int, float)) and not isinstance(vec, bool)
for vec in value
]
)
for value in validated_embeddings
]
)
@given(unsupported_types=st.sampled_from([str, bool]))
def test_autocasting_validate_embeddings_incompatible_types(
unsupported_types: List[Any],
) -> None:
embds = strategies.create_embeddings(10, 10, unsupported_types)
with pytest.raises(ValueError) as e:
validate_embeddings(Collection._normalize_embeddings(embds))
assert "Expected each value in the embedding to be a int or float" in str(e)
def test_0dim_embedding_validation() -> None:
embds = [[]]
with pytest.raises(ValueError) as e:
validate_embeddings(embds)
assert "Expected each embedding in the embeddings to be a non-empty list" in str(e) |