Spaces:
Sleeping
Sleeping
File size: 2,304 Bytes
c20196f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from datasets import load_dataset
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
import numpy as np
import evaluate
import torch
print("π₯ Loading GoEmotions dataset...")
dataset = load_dataset("go_emotions", "simplified")
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
num_labels = dataset["train"].features["labels"].feature.num_classes
print(f"β
Classes: {num_labels}")
def tokenize_and_encode(batch):
enc = tokenizer(batch["text"], padding="max_length", truncation=True, max_length=128)
labels = []
for labs in batch["labels"]:
vec = [0] * num_labels
for l in labs:
vec[l] = 1
labels.append(vec)
enc["labels"] = labels
return enc
encoded = dataset.map(tokenize_and_encode, batched=True)
encoded.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
model = BertForSequenceClassification.from_pretrained(
model_name, num_labels=num_labels, problem_type="multi_label_classification"
)
f1 = evaluate.load("f1")
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = (logits > 0).astype(int) # threshold at 0 for BCEWithLogits
return {
"accuracy": accuracy.compute(predictions=preds, references=labels)["accuracy"],
"f1_micro": f1.compute(predictions=preds, references=labels, average="micro")["f1"],
"f1_macro": f1.compute(predictions=preds, references=labels, average="macro")["f1"],
}
args = TrainingArguments(
output_dir="bert_emotion",
eval_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=100,
load_best_model_at_end=True,
metric_for_best_model="f1_micro"
)
trainer = Trainer(
model=model,
args=args,
train_dataset=encoded["train"],
eval_dataset=encoded["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
print("π Training...")
trainer.train()
model.save_pretrained("./bert_emotion")
tokenizer.save_pretrained("./bert_emotion")
print("β
Saved fine-tuned model to ./bert_emotion")
|