File size: 16,796 Bytes
37c870e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright:
#
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from dataclasses import dataclass, field
import json
import math
import pathlib
from typing import Dict, Optional, Sequence

import numpy as np
import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother

from fastchat.conversation import SeparatorStyle
from fastchat.model.model_adapter import get_conversation_template

IGNORE_TOKEN_ID = LabelSmoother.ignore_index


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": "Whether or not to allow for custom models defined on the Hub in their own modeling files"
        },
    )
    padding_side: str = field(
        default="right", metadata={"help": "The padding side in tokenizer"}
    )


@dataclass
class DataArguments:
    data_path: str = field(
        default=None, metadata={"help": "Path to the training data."}
    )
    eval_data_path: str = field(
        default=None, metadata={"help": "Path to the evaluation data."}
    )
    lazy_preprocess: bool = False
    last_response_loss: bool = False
    split_example_loss: bool = False
    efficient_loss: bool = False


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )


local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


def trainer_save_model_safe(trainer: transformers.Trainer):
    from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
    from torch.distributed.fsdp import StateDictType, FullStateDictConfig

    save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
    with FSDP.state_dict_type(
        trainer.model, StateDictType.FULL_STATE_DICT, save_policy
    ):
        trainer.save_model()


# add by wpf for yuan test
def right_replace(string, old, new, max=1):
    return string[::-1].replace(old[::-1], new[::-1], max)[::-1]


def preprocess(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    data_args,
) -> Dict:
    conv = get_conversation_template("yuan2")  # wpf
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())
        if data_args.last_response_loss:
            a = conversations[0].replace("<sep>", "<eod>")
            a = right_replace(a, "<n>", "<sep>")
            # a=right_replace(a,"<n>","\n",max=20)
            conversations[0] = a
        if data_args.split_example_loss:
            a = conversations[0].replace("<sep>", "")
            a = a.split("<n>")
            for i in range(int(len(a) / 2)):
                if i == 0:
                    conversations[i] = ""
                if i != 0:
                    conversations.append("")
                for j in range(i * 2):
                    conversations[i] = conversations[i] + a[j] + "<n>"
                conversations[i] = (
                    conversations[i] + a[i * 2] + "<sep>" + a[i * 2 + 1] + "<eod>"
                )

        if data_args.efficient_loss:
            a = conversations[0].replace("<sep>", "<eod>")
            conversations[0] = a

        print(conversations)

    # Tokenize conversations
    input_ids = tokenizer(
        conversations,
        return_tensors="pt",
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
    ).input_ids
    targets = input_ids.clone()

    # assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO  #wpf
    # Mask targets. Only compute loss on the assistant outputs.
    # sep = conv.sep + conv.roles[1] + ": " #wpf

    if data_args.split_example_loss:
        for conversation, target in zip(conversations, targets):
            total_len = int(target.ne(tokenizer.pad_token_id).sum())
            turns = conversation.split("<sep>")
            cur_len = 1
            target[:cur_len] = IGNORE_TOKEN_ID

            for i, turn in enumerate(turns):
                if turn == "":
                    break
                if i == 0 or i == len(turns) - 1:
                    turn_len = len(tokenizer(turn).input_ids)
                else:
                    turn_len = len(tokenizer(turn).input_ids) + 1
                # parts = turn.split(sep)
                # if len(parts) != 2:
                #     break
                # parts[0] += sep
                # "-2" is hardcoded for the Llama tokenizer to make the offset correct.
                instruction_len = 0
                if i == len(turns) - 1:
                    instruction_len = turn_len
                target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
                cur_len += turn_len

            target[cur_len:] = IGNORE_TOKEN_ID
            # print("cur_len:  ", cur_len)
            # print("total_len:  ", total_len)

            if False:  # Inspect and check the correctness of masking
                z = target.clone()
                z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
                rank0_print(tokenizer.decode(z))
                exit()

            if cur_len < tokenizer.model_max_length:
                if cur_len != total_len:
                    target[:] = IGNORE_TOKEN_ID
                    rank0_print(
                        f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                        f" #turn = {len(turns) - 1}. (ignored)"
                    )

    if data_args.efficient_loss:
        for conversation, target in zip(conversations, targets):
            total_len = int(target.ne(tokenizer.pad_token_id).sum())

            turns = conversation.split("<n>")
            cur_len = 1
            target[:cur_len] = IGNORE_TOKEN_ID

            for i, turn in enumerate(turns):
                if turn == "":
                    break
                if i == 0 or i == len(turns) - 1:
                    turn_len = len(tokenizer(turn).input_ids)
                else:
                    turn_len = len(tokenizer(turn).input_ids) + 1
                # parts = turn.split(sep)
                # if len(parts) != 2:
                #     break
                # parts[0] += sep
                # "-2" is hardcoded for the Llama tokenizer to make the offset correct.
                instruction_len = 0
                if i % 2 == 0:
                    instruction_len = turn_len

                # if i != 0 and not tokenizer.legacy:
                #     # The legacy and non-legacy modes handle special tokens differently
                #     instruction_len -= 1

                # Ignore the user instructions
                target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
                cur_len += turn_len

                if i != 0 and not tokenizer.legacy:
                    # The legacy and non-legacy modes handle special tokens differently
                    cur_len -= 1
            target[cur_len:] = IGNORE_TOKEN_ID
            # print("cur_len:  ", cur_len)
            # print("total_len:  ", total_len)

            if False:  # Inspect and check the correctness of masking
                z = target.clone()
                z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
                rank0_print(tokenizer.decode(z))
                exit()

            if cur_len < tokenizer.model_max_length:
                if cur_len != total_len:
                    target[:] = IGNORE_TOKEN_ID
                    rank0_print(
                        f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                        f" #turn = {len(turns) - 1}. (ignored)"
                    )
    if data_args.last_response_loss:
        for conversation, target in zip(conversations, targets):
            total_len = int(target.ne(tokenizer.pad_token_id).sum())

            turns = conversation.split("<sep>")
            cur_len = 1
            target[:cur_len] = IGNORE_TOKEN_ID

            for i, turn in enumerate(turns):
                if turn == "":
                    break
                if i == 0 or i == len(turns) - 1:
                    turn_len = len(tokenizer(turn).input_ids)
                else:
                    turn_len = len(tokenizer(turn).input_ids) + 1
                # parts = turn.split(sep)
                # if len(parts) != 2:
                #     break
                # parts[0] += sep
                # "-2" is hardcoded for the Llama tokenizer to make the offset correct.
                instruction_len = 0
                if i == len(turns) - 1:
                    instruction_len = turn_len

                # if i != 0 and not tokenizer.legacy:
                #     # The legacy and non-legacy modes handle special tokens differently
                #     instruction_len -= 1

                # Ignore the user instructions
                target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
                cur_len += turn_len

                # if i != 0 and not tokenizer.legacy:
                #     # The legacy and non-legacy modes handle special tokens differently
                #     cur_len -= 1

            target[cur_len:] = IGNORE_TOKEN_ID
            # print("cur_len:  ", cur_len)
            # print("total_len:  ", total_len)

            if False:  # Inspect and check the correctness of masking
                z = target.clone()
                z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
                rank0_print(tokenizer.decode(z))
                exit()

            if cur_len < tokenizer.model_max_length:
                if cur_len != total_len:
                    target[:] = IGNORE_TOKEN_ID
                    rank0_print(
                        f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                        f" #turn = {len(turns) - 1}. (ignored)"
                    )

    return dict(
        input_ids=input_ids,
        labels=targets,
        attention_mask=input_ids.ne(tokenizer.pad_token_id),
    )


class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(
        self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
    ):
        super(SupervisedDataset, self).__init__()

        rank0_print("Formatting inputs...")
        sources = [example["conversations"] for example in raw_data]
        data_dict = preprocess(sources, tokenizer, data_args)

        self.input_ids = data_dict["input_ids"]
        self.labels = data_dict["labels"]
        self.attention_mask = data_dict["attention_mask"]

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        return dict(
            input_ids=self.input_ids[i],
            labels=self.labels[i],
            attention_mask=self.attention_mask[i],
        )


class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(
        self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
    ):
        super(LazySupervisedDataset, self).__init__()
        self.tokenizer = tokenizer

        rank0_print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.raw_data = raw_data
        self.data_args = data_args
        self.cached_data_dict = {}

    def __len__(self):
        return len(self.raw_data)

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        if i in self.cached_data_dict:
            return self.cached_data_dict[i]

        ret = preprocess(
            [self.raw_data[i]["conversations"]], self.tokenizer, self.data_args
        )
        ret = dict(
            input_ids=ret["input_ids"][0],
            labels=ret["labels"][0],
            attention_mask=ret["attention_mask"][0],
        )
        self.cached_data_dict[i] = ret

        return ret


def make_supervised_data_module(
    tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    dataset_cls = (
        LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
    )
    rank0_print("Loading data...")

    train_json = json.load(open(data_args.data_path, "r"))
    train_dataset = dataset_cls(train_json, data_args, tokenizer=tokenizer)

    if data_args.eval_data_path:
        eval_json = json.load(open(data_args.eval_data_path, "r"))
        eval_dataset = dataset_cls(eval_json, data_args, tokenizer=tokenizer)
    else:
        eval_dataset = None

    return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)


def train():
    global local_rank

    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    local_rank = training_args.local_rank

    # Set RoPE scaling factor
    config = transformers.AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        trust_remote_code=model_args.trust_remote_code,
    )
    orig_ctx_len = getattr(config, "max_position_embeddings", None)
    if orig_ctx_len and training_args.model_max_length > orig_ctx_len:
        scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len))
        config.rope_scaling = {"type": "linear", "factor": scaling_factor}
    config.use_cache = False

    # Load model and tokenizer
    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=training_args.cache_dir,
        trust_remote_code=model_args.trust_remote_code,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side=model_args.padding_side,
        use_fast=False,
        trust_remote_code=model_args.trust_remote_code,
    )

    if tokenizer.pad_token != tokenizer.unk_token:
        tokenizer.pad_token = tokenizer.unk_token
    tokenizer.add_tokens(
        [
            "<eod>",
            "<sep>",
            "<pad>",
            "<mask>",
            "<predict>",
            "<FIM_SUFFIX>",
            "<FIM_PREFIX>",
            "<FIM_MIDDLE>",
            "<commit_before>",
            "<commit_msg>",
            "<commit_after>",
            "<jupyter_start>",
            "<jupyter_text>",
            "<jupyter_code>",
            "<jupyter_output>",
            "<empty_output>",
        ],
        special_tokens=True,
    )

    # Load data
    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)

    # Start trainner
    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )
    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()

    # Save model
    model.config.use_cache = True
    trainer.save_state()
    if trainer.is_deepspeed_enabled:
        trainer.save_model()
    else:
        trainer_save_model_safe(trainer)


if __name__ == "__main__":
    train()