File size: 16,796 Bytes
37c870e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright:
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import json
import math
import pathlib
from typing import Dict, Optional, Sequence
import numpy as np
import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother
from fastchat.conversation import SeparatorStyle
from fastchat.model.model_adapter import get_conversation_template
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
trust_remote_code: bool = field(
default=False,
metadata={
"help": "Whether or not to allow for custom models defined on the Hub in their own modeling files"
},
)
padding_side: str = field(
default="right", metadata={"help": "The padding side in tokenizer"}
)
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
last_response_loss: bool = False
split_example_loss: bool = False
efficient_loss: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def trainer_save_model_safe(trainer: transformers.Trainer):
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType, FullStateDictConfig
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(
trainer.model, StateDictType.FULL_STATE_DICT, save_policy
):
trainer.save_model()
# add by wpf for yuan test
def right_replace(string, old, new, max=1):
return string[::-1].replace(old[::-1], new[::-1], max)[::-1]
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
data_args,
) -> Dict:
conv = get_conversation_template("yuan2") # wpf
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
if data_args.last_response_loss:
a = conversations[0].replace("<sep>", "<eod>")
a = right_replace(a, "<n>", "<sep>")
# a=right_replace(a,"<n>","\n",max=20)
conversations[0] = a
if data_args.split_example_loss:
a = conversations[0].replace("<sep>", "")
a = a.split("<n>")
for i in range(int(len(a) / 2)):
if i == 0:
conversations[i] = ""
if i != 0:
conversations.append("")
for j in range(i * 2):
conversations[i] = conversations[i] + a[j] + "<n>"
conversations[i] = (
conversations[i] + a[i * 2] + "<sep>" + a[i * 2 + 1] + "<eod>"
)
if data_args.efficient_loss:
a = conversations[0].replace("<sep>", "<eod>")
conversations[0] = a
print(conversations)
# Tokenize conversations
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
# assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO #wpf
# Mask targets. Only compute loss on the assistant outputs.
# sep = conv.sep + conv.roles[1] + ": " #wpf
if data_args.split_example_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<sep>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i == len(turns) - 1:
instruction_len = turn_len
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
if data_args.efficient_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<n>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i % 2 == 0:
instruction_len = turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# instruction_len -= 1
# Ignore the user instructions
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
if data_args.last_response_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<sep>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i == len(turns) - 1:
instruction_len = turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# instruction_len -= 1
# Ignore the user instructions
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# cur_len -= 1
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, data_args)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.data_args = data_args
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess(
[self.raw_data[i]["conversations"]], self.tokenizer, self.data_args
)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, data_args, tokenizer=tokenizer)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, data_args, tokenizer=tokenizer)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
trust_remote_code=model_args.trust_remote_code,
)
orig_ctx_len = getattr(config, "max_position_embeddings", None)
if orig_ctx_len and training_args.model_max_length > orig_ctx_len:
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
config.use_cache = False
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side=model_args.padding_side,
use_fast=False,
trust_remote_code=model_args.trust_remote_code,
)
if tokenizer.pad_token != tokenizer.unk_token:
tokenizer.pad_token = tokenizer.unk_token
tokenizer.add_tokens(
[
"<eod>",
"<sep>",
"<pad>",
"<mask>",
"<predict>",
"<FIM_SUFFIX>",
"<FIM_PREFIX>",
"<FIM_MIDDLE>",
"<commit_before>",
"<commit_msg>",
"<commit_after>",
"<jupyter_start>",
"<jupyter_text>",
"<jupyter_code>",
"<jupyter_output>",
"<empty_output>",
],
special_tokens=True,
)
# Load data
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
# Start trainner
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
# Save model
model.config.use_cache = True
trainer.save_state()
if trainer.is_deepspeed_enabled:
trainer.save_model()
else:
trainer_save_model_safe(trainer)
if __name__ == "__main__":
train()
|