File size: 7,794 Bytes
6035089 4d4e761 6035089 6c70050 6035089 5c00362 e5b1b1c 6035089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import os
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer, ConversationalPipeline
####CREDIT#####
# Credit to author (Sri Laxmi) of original code reference: SriLaxmi1993
# Sri LaxmiGithub Link: https://github.com/SriLaxmi1993/Document-Genie-using-RAG-Framwork
# Sri Laxmi Youtube:https://www.youtube.com/watch?v=SkY2u4UUr6M&t=112s
###############
CH_size = 450
CH_overlap = 50
os.system("pip install -r requirements.txt")
# some model
#tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
#model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
st.set_page_config(page_title="Gemini RAG", layout="wide")
# This is the first API key input; no need to repeat it in the main function.
api_key = 'AIzaSyCvXRggpO2yNwIpZmoMy_5Xhm2bDyD-pOo'
#os.mkdir('faiss_index')
# empty faiss_index and chat_history.json
def delete_files_in_folder(folder_path):
try:
# Iterate over all the files in the folder
chat_history_file = "chat_history.json"
if os.path.exists(chat_history_file):
os.remove(chat_history_file)
for file_name in os.listdir(folder_path):
file_path = os.path.join(folder_path, file_name)
if os.path.isfile(file_path): # Check if it's a file
os.remove(file_path) # Delete the file
print(f"Deleted file: {file_path}")
print("All files within the folder have been deleted successfully!")
except Exception as e:
print(f"An error occurred: {e}")
if st.button("Reset Files", key="reset_button"):
folder_path = 'faiss_index'
delete_files_in_folder(folder_path)
CH_size = 450
CH_overlap = 50
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CH_size, chunk_overlap=CH_overlap)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer. When giving an answer, try to include all mentionings of the subject being asked and include this within your response\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.2, google_api_key=api_key)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
# chat history functionality
def update_chat_history(question, reply):
# Check if chat history file exists
chat_history_file = "chat_history.json"
if os.path.exists(chat_history_file):
# If file exists, load existing chat history
with open(chat_history_file, "r") as file:
chat_history = json.load(file)
else:
# If file doesn't exist, initialize chat history
chat_history = {"conversations": []}
# Add current conversation to chat history
chat_history["conversations"].append({"question": question, "reply": reply})
# Write updated chat history back to file
with open(chat_history_file, "w") as file:
json.dump(chat_history, file, indent=4)
# Display chat history
st.subheader("Chat History")
for conversation in chat_history["conversations"]:
st.write(f"**Question:** {conversation['question']}")
st.write(f"**Reply:** {conversation['reply']}")
st.write("---")
def user_input(user_question, api_key):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
st.write("Reply: ", response["output_text"])
#chat history
update_chat_history(user_question, response["output_text"])
''''''''''''''''''
def clear_faiss_index(folder_path):
try:
if os.path.exists(folder_path):
for file_name in os.listdir(folder_path):
file_path = os.path.join(folder_path, file_name)
if os.path.isfile(file_path):
os.remove(file_path)
st.write("Existing FAISS index files cleared successfully!")
else:
st.write("No existing FAISS index files found.")
except Exception as e:
st.error(f"An error occurred while clearing FAISS index files: {e}")
# Function to process PDF files and recreate FAISS index
def recreate_faiss_index(pdf_docs, chunk_size, chunk_overlap, api_key):
try:
# Clear existing FAISS index files
clear_faiss_index("faiss_index")
# Process PDF files and extract text
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
# Split text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = text_splitter.split_text(text)
# Generate embeddings for text chunks
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
# Save FAISS index
vector_store.save_local("faiss_index")
st.success("FAISS index recreated successfully!")
except Exception as e:
st.error(f"An error occurred while recreating FAISS index: {e}")
def main():
CH_size = 450
CH_overlap = 50
st.header("RAG based LLM Application")
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
if user_question and api_key:
user_input(user_question, api_key)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button",
accept_multiple_files=True, key="pdf_uploader")
if st.button("Submit & Process", key="process_button") and api_key:
with st.spinner("Processing..."):
CH_size = 450
CH_overlap = 50
recreate_faiss_index(pdf_docs, CH_size, CH_overlap, api_key)
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks, api_key)
st.success("Done")
if __name__ == "__main__":
main()
|