File size: 11,263 Bytes
0918cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""Official evaluation script for SQuAD version 2.0.

In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import argparse
import collections
import json
import os
import re
import string
import sys

import numpy as np


ARTICLES_REGEX = re.compile(r"\b(a|an|the)\b", re.UNICODE)

OPTS = None


def parse_args():
    parser = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.")
    parser.add_argument("data_file", metavar="data.json", help="Input data JSON file.")
    parser.add_argument("pred_file", metavar="pred.json", help="Model predictions.")
    parser.add_argument(
        "--out-file", "-o", metavar="eval.json", help="Write accuracy metrics to file (default is stdout)."
    )
    parser.add_argument(
        "--na-prob-file", "-n", metavar="na_prob.json", help="Model estimates of probability of no answer."
    )
    parser.add_argument(
        "--na-prob-thresh",
        "-t",
        type=float,
        default=1.0,
        help='Predict "" if no-answer probability exceeds this (default = 1.0).',
    )
    parser.add_argument(
        "--out-image-dir", "-p", metavar="out_images", default=None, help="Save precision-recall curves to directory."
    )
    parser.add_argument("--verbose", "-v", action="store_true")
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)
    return parser.parse_args()


def make_qid_to_has_ans(dataset):
    qid_to_has_ans = {}
    for article in dataset:
        for p in article["paragraphs"]:
            for qa in p["qas"]:
                qid_to_has_ans[qa["id"]] = bool(qa["answers"]["text"])
    return qid_to_has_ans


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return ARTICLES_REGEX.sub(" ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def get_tokens(s):
    if not s:
        return []
    return normalize_answer(s).split()


def compute_exact(a_gold, a_pred):
    return int(normalize_answer(a_gold) == normalize_answer(a_pred))


def compute_f1(a_gold, a_pred):
    gold_toks = get_tokens(a_gold)
    pred_toks = get_tokens(a_pred)
    common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
    num_same = sum(common.values())
    if len(gold_toks) == 0 or len(pred_toks) == 0:
        # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
        return int(gold_toks == pred_toks)
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(pred_toks)
    recall = 1.0 * num_same / len(gold_toks)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def get_raw_scores(dataset, preds):
    exact_scores = {}
    f1_scores = {}
    for article in dataset:
        for p in article["paragraphs"]:
            for qa in p["qas"]:
                qid = qa["id"]
                gold_answers = [t for t in qa["answers"]["text"] if normalize_answer(t)]
                if not gold_answers:
                    # For unanswerable questions, only correct answer is empty string
                    gold_answers = [""]
                if qid not in preds:
                    print(f"Missing prediction for {qid}")
                    continue
                a_pred = preds[qid]
                # Take max over all gold answers
                exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
                f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
    return exact_scores, f1_scores


def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
    new_scores = {}
    for qid, s in scores.items():
        pred_na = na_probs[qid] > na_prob_thresh
        if pred_na:
            new_scores[qid] = float(not qid_to_has_ans[qid])
        else:
            new_scores[qid] = s
    return new_scores


def make_eval_dict(exact_scores, f1_scores, qid_list=None):
    if not qid_list:
        total = len(exact_scores)
        return collections.OrderedDict(
            [
                ("exact", 100.0 * sum(exact_scores.values()) / total),
                ("f1", 100.0 * sum(f1_scores.values()) / total),
                ("total", total),
            ]
        )
    else:
        total = len(qid_list)
        return collections.OrderedDict(
            [
                ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
                ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
                ("total", total),
            ]
        )


def merge_eval(main_eval, new_eval, prefix):
    for k in new_eval:
        main_eval[f"{prefix}_{k}"] = new_eval[k]


def plot_pr_curve(precisions, recalls, out_image, title):
    plt.step(recalls, precisions, color="b", alpha=0.2, where="post")
    plt.fill_between(recalls, precisions, step="post", alpha=0.2, color="b")
    plt.xlabel("Recall")
    plt.ylabel("Precision")
    plt.xlim([0.0, 1.05])
    plt.ylim([0.0, 1.05])
    plt.title(title)
    plt.savefig(out_image)
    plt.clf()


def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans, out_image=None, title=None):
    qid_list = sorted(na_probs, key=lambda k: na_probs[k])
    true_pos = 0.0
    cur_p = 1.0
    cur_r = 0.0
    precisions = [1.0]
    recalls = [0.0]
    avg_prec = 0.0
    for i, qid in enumerate(qid_list):
        if qid_to_has_ans[qid]:
            true_pos += scores[qid]
        cur_p = true_pos / float(i + 1)
        cur_r = true_pos / float(num_true_pos)
        if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
            # i.e., if we can put a threshold after this point
            avg_prec += cur_p * (cur_r - recalls[-1])
            precisions.append(cur_p)
            recalls.append(cur_r)
    if out_image:
        plot_pr_curve(precisions, recalls, out_image, title)
    return {"ap": 100.0 * avg_prec}


def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, out_image_dir):
    if out_image_dir and not os.path.exists(out_image_dir):
        os.makedirs(out_image_dir)
    num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
    if num_true_pos == 0:
        return
    pr_exact = make_precision_recall_eval(
        exact_raw,
        na_probs,
        num_true_pos,
        qid_to_has_ans,
        out_image=os.path.join(out_image_dir, "pr_exact.png"),
        title="Precision-Recall curve for Exact Match score",
    )
    pr_f1 = make_precision_recall_eval(
        f1_raw,
        na_probs,
        num_true_pos,
        qid_to_has_ans,
        out_image=os.path.join(out_image_dir, "pr_f1.png"),
        title="Precision-Recall curve for F1 score",
    )
    oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
    pr_oracle = make_precision_recall_eval(
        oracle_scores,
        na_probs,
        num_true_pos,
        qid_to_has_ans,
        out_image=os.path.join(out_image_dir, "pr_oracle.png"),
        title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)",
    )
    merge_eval(main_eval, pr_exact, "pr_exact")
    merge_eval(main_eval, pr_f1, "pr_f1")
    merge_eval(main_eval, pr_oracle, "pr_oracle")


def histogram_na_prob(na_probs, qid_list, image_dir, name):
    if not qid_list:
        return
    x = [na_probs[k] for k in qid_list]
    weights = np.ones_like(x) / float(len(x))
    plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
    plt.xlabel("Model probability of no-answer")
    plt.ylabel("Proportion of dataset")
    plt.title(f"Histogram of no-answer probability: {name}")
    plt.savefig(os.path.join(image_dir, f"na_prob_hist_{name}.png"))
    plt.clf()


def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
    num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
    cur_score = num_no_ans
    best_score = cur_score
    best_thresh = 0.0
    qid_list = sorted(na_probs, key=lambda k: na_probs[k])
    for i, qid in enumerate(qid_list):
        if qid not in scores:
            continue
        if qid_to_has_ans[qid]:
            diff = scores[qid]
        else:
            if preds[qid]:
                diff = -1
            else:
                diff = 0
        cur_score += diff
        if cur_score > best_score:
            best_score = cur_score
            best_thresh = na_probs[qid]
    return 100.0 * best_score / len(scores), best_thresh


def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
    best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
    best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
    main_eval["best_exact"] = best_exact
    main_eval["best_exact_thresh"] = exact_thresh
    main_eval["best_f1"] = best_f1
    main_eval["best_f1_thresh"] = f1_thresh


def main():
    with open(OPTS.data_file) as f:
        dataset_json = json.load(f)
        dataset = dataset_json["data"]
    with open(OPTS.pred_file) as f:
        preds = json.load(f)
    if OPTS.na_prob_file:
        with open(OPTS.na_prob_file) as f:
            na_probs = json.load(f)
    else:
        na_probs = {k: 0.0 for k in preds}
    qid_to_has_ans = make_qid_to_has_ans(dataset)  # maps qid to True/False
    has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
    no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
    exact_raw, f1_raw = get_raw_scores(dataset, preds)
    exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh)
    f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh)
    out_eval = make_eval_dict(exact_thresh, f1_thresh)
    if has_ans_qids:
        has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
        merge_eval(out_eval, has_ans_eval, "HasAns")
    if no_ans_qids:
        no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
        merge_eval(out_eval, no_ans_eval, "NoAns")
    if OPTS.na_prob_file:
        find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
    if OPTS.na_prob_file and OPTS.out_image_dir:
        run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, OPTS.out_image_dir)
        histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, "hasAns")
        histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, "noAns")
    if OPTS.out_file:
        with open(OPTS.out_file, "w") as f:
            json.dump(out_eval, f)
    else:
        print(json.dumps(out_eval, indent=2))


if __name__ == "__main__":
    OPTS = parse_args()
    if OPTS.out_image_dir:
        import matplotlib

        matplotlib.use("Agg")
        import matplotlib.pyplot as plt
    main()