File size: 32,179 Bytes
7b2afd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging
import os

from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
    LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
    WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np

import requests

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# EVALITA results
BASELINES = {
    "TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
    "LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}

# GPT-4o results
REFERENCES = {
    "NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}

TASK_METADATA_MULTIPLECHOICE = {
    "TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
    "SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
    "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
    "AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
    "WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
    "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}

TASK_METADATA_GENERATIVE = {
    "LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""},
    "SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""},
    "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
    "REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
}

# Function to send a Slack notification for a new model submission for evaluation
def send_slack_notification(model_name, user_name, user_affiliation):
    # Insert your Slack webhook URL here
    webhook_url = os.getenv("WEBHOOK_URL")

    # Create the messag to be sent to Slack
    message = {
        "text": f"New model submission for EVALITA-LLM leaderboard:\n\n"
                f"**Model Name**: {model_name}\n"
                f"**User**: {user_name}\n"
                f"**Affiliation**: {user_affiliation}\n"
                f"Check out the model on HuggingFace: https://huggingface.co/{model_name}"
    }

    # Send the message to Slack
    response = requests.post(webhook_url, json=message)

    # Check if the request was successful and return the appropriate message
    if response.status_code == 200:
        return "βœ… **Notification sent successfully!**"
    else:
        return f"❌ **Failed to send notification**: {response.text}"


# Funcion to validate the model submission and send the request for processing
def validate_and_submit_request(model_name, user_email, user_affiliation):
    # Check if model name is provided and not empt
    if not model_name or not model_name.strip():
        return "❌ **Error:** Model name is required."

    # Check if user email is provided and not empty
    if not user_email or not user_email.strip():
        return "❌ **Error:** Email address is required."

    # Validate email format using regex
    email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
    if not re.match(email_regex, user_email.strip()):
        return "❌ **Error:** Invalid email format. Please enter a valid email address."

    # Check if user affiliation is provided and not empty
    if not user_affiliation or not user_affiliation.strip():
        return "❌ **Error:** Affiliation is required."

    # Check if model name follows the correct format (organization/model-name)
    if "/" not in model_name:
        return "❌ **Error:** Model name must be in format 'organization/model-name' (e.g., 'microsoft/DialoGPT-medium')."

    # Check if the model name contains only valid characters
    if not re.match(r'^[a-zA-Z0-9._/-]+$', model_name):
        return "❌ **Error:** Model name contains invalid characters."

    slack_response = send_slack_notification(model_name.strip(), user_email.strip(), user_affiliation.strip())

    # Return the Slack response (success or failure message)
    return slack_response

def highlight_best_per_task(df):
    """Add 🟑 symbol next to the maximum value in each task column"""

    task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    df = df.copy()
    for col in task_columns:
        if col in df.columns:
            max_val = df[col].max()
            df[col] = df[col].apply(
                lambda x: f"{x:.1f}πŸ”Ί" if x == max_val else f"{x:.1f}"
            )
    return df

def theoretical_performance(df_hash):
    """

    Theoretical performance of a model that scores the highest on every individual task

    """
    # This is a placeholder - you'd need to pass the actual dataframe
    # In practice, you'd compute this once and store it
    #fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
    return 75.0  # Placeholder value


def scale_sizes(values, min_size=8, max_size=30):
    """Normalize sizes for scatter plot markers """
    if not values:
        return []
    vmin, vmax = min(values), max(values)
    if vmax == vmin:
        return [(min_size + max_size) / 2] * len(values)
    return [
        min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
        for val in values
    ]


def extract_model_name(model_string):
    """Extract model name from HTML string."""
    match = re.search(r'>([^<]+)<', model_string)
    return match.group(1) if match else model_string


def create_line_chart(dataframe):
    """Create left chart."""

    def scale_sizes(values, min_size=8, max_size=30):
        vmin, vmax = min(values), max(values)
        return [
            min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
            else (min_size + max_size) / 2
            for val in values
        ]

    fig = go.Figure()

    # Loop su 5-Shot e 0-Shot
    for shot, color in [(True, "blue"), (False, "red")]:
        df = dataframe[dataframe["IS_FS"] == shot]

        x = df["#Params (B)"].tolist()
        y = df["Avg. Comb. Perf. ⬆️"].tolist()
        labels = [
            re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
            for m in df["Model"].tolist()
        ]

        fig.add_trace(go.Scatter(
            x=x,
            y=y,
            mode="markers",
            name="5-Shot" if shot else "0-Shot",
            marker=dict(color=color, size=scale_sizes(x)),
            hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
            customdata=labels,
        ))

    # Show the best model
    all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
    if all_y:
        max_idx = all_y.index(max(all_y))
        max_x = dataframe["#Params (B)"].iloc[max_idx]
        max_y = all_y[max_idx]
        max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)

        fig.add_annotation(
            x=max_x,
            y=max_y,
            text=max_label,
            showarrow=True,
            arrowhead=2,
            arrowsize=1,
            arrowwidth=2,
            arrowcolor="black",
            font=dict(size=11, color="black"),
            xshift=10, yshift=10,
            ax=-30, ay=-20,
            xanchor="right"
        )

    # Layout
    fig.update_layout(
        title="Average Combined Performance vs #Params",
        xaxis_title="#Params (B)", yaxis_title="Average Combined Performance",
        template="plotly_white", hovermode="closest",
        font=dict(family="Arial", size=10), dragmode=False,
        xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
        yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
    )

    # Caption
    fig.add_annotation(
        text="Accuracy generally rises with #Params, but smaller models <br>"
             "with 5-shot can outperform larger zero-shot models.",
        xref="paper", yref="paper", x=0.5, y=-0.3,
        showarrow=False, font=dict(size=11, color="gray"),
        align="center", xanchor="center"
    )

    fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
    fig.update_yaxes(fixedrange=True)

    return fig


def create_boxplot_task(dataframe=None, baselines=None, references=None):
    """Create right chart"""
    print(dataframe.columns)

    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    # Dati di default se non forniti
    if dataframe is None:
        np.random.seed(42)
        dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})

    if baselines is None:
        baselines = {task: np.random.randint(50, 70) for task in tasks}

    if references is None:
        references = {}

    colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
              "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]

    fig = go.Figure()

    for i, task in enumerate(tasks):
        if task not in dataframe.columns:
            continue

        y_data = dataframe[task].dropna().tolist()

        # Boxplot
        fig.add_trace(go.Box(
            y=y_data,
            name=task,
            marker=dict(color=colors[i]),
            line=dict(color="black", width=2),
            fillcolor=colors[i],
            opacity=0.7,
            hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
            hoverlabel=dict(bgcolor=colors[i], font_color="white"),
            width=0.6,
            whiskerwidth=0.2,
            quartilemethod="linear"
        ))

        # Linea baseline
        baseline_value = baselines.get(task)
        if baseline_value is not None:
            fig.add_shape(
                type="line",
                x0=i - 0.3, x1=i + 0.3,
                y0=baseline_value, y1=baseline_value,
                line=dict(color="black", width=2, dash="dot"),
                xref="x", yref="y"
            )

        # Linea reference GPT-4o
        reference_value = references.get(task)
        if reference_value is not None:
            fig.add_shape(
                type="line",
                x0=i - 0.3, x1=i + 0.3,
                y0=reference_value, y1=reference_value,
                line=dict(color="red", width=2, dash="dashdot"),
                xref="x", yref="y"
            )

    # Layout
    fig.update_layout(
        title="Distribution of Model Accuracy by Task",
        xaxis_title="Task",
        yaxis_title="Combined Performance",
        template="plotly_white",
        boxmode="group",
        dragmode=False,
        font=dict(family="Arial", size=10),
        margin=dict(b=80),
    )

    # Caption
    fig.add_annotation(
        text=(
            "In tasks like TE and SA, models approach the accuracy of supervised <br>"
            "models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
            "Dashed red lines show GPT-4o reference results for generative tasks."
        ),
        xref="paper", yref="paper",
        x=0.5, y=-0.30,
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="center"
    )

    fig.update_yaxes(range=[0, 100], fixedrange=True)
    fig.update_xaxes(fixedrange=True)

    return fig


def create_medal_assignments(sorted_df):
    """Function for medal assignment logic"""
    medals = {
        'large_fs': False, 'medium_fs': False, 'small_fs': False,
        'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
    }

    new_model_column = []

    for _, row in sorted_df.iterrows():
        model_name = row['Model']
        size = row["Size"]
        is_fs = row['IS_FS']

        if is_fs:  # 5-Few-Shot
            if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_fs']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸ†"
                medals['large_fs'] = True
            elif size == "πŸ”΅πŸ”΅" and not medals['medium_fs']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ†"
                medals['medium_fs'] = True
            elif size == "πŸ”΅" and not medals['small_fs']:
                model_name = f"{model_name} πŸ”΅πŸ†"
                medals['small_fs'] = True
        else:  # 0-Shot
            if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_0shot']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ"
                medals['large_0shot'] = True
            elif size == "πŸ”΅πŸ”΅" and not medals['medium_0shot']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸŽ–οΈ"
                medals['medium_0shot'] = True
            elif size == "πŸ”΅" and not medals['small_0shot']:
                model_name = f"{model_name} πŸ”΅πŸŽ–οΈ"
                medals['small_0shot'] = True

        new_model_column.append(model_name)

    return new_model_column


def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
    """Base leaderboard creation with common parameters. """

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=hidden_columns,
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False,
    )


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """Leaderboard initialization """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # Sort and reset index
    sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Apply medal assignments
    sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)

    # Show the best values for tasks
    sorted_dataframe = highlight_best_per_task(sorted_dataframe)

    field_list = fields(AutoEvalColumn)

    return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)


def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):

    """ Task-specific leaderboard update."""
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # Sort and reset index
    sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Apply medal assignments
    sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list] + [int],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=hidden_columns,
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False
    )


def download_snapshot(repo, local_dir, max_retries=3):
    """Snapshot download with retry logic."""
    for attempt in range(max_retries):
        try:
            logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
            snapshot_download(
                repo_id=repo,
                local_dir=local_dir,
                repo_type="dataset",
                tqdm_class=None,
                etag_timeout=30,
                token=TOKEN
            )
            return True
        except Exception as e:
            logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
            if attempt == max_retries - 1:
                logger.error(f"Failed to download {repo} after {max_retries} attempts")
                return False
    return False


def restart_space():
    """Restart the Hugging Face space."""
    try:
        logger.info("Restarting space... ")
        API.restart_space(repo_id=REPO_ID)
    except Exception as e:
        logger.error(f"Error restarting space: {e}")


def create_title_html():
    """Function for title HTML."""
    return """

    <div class="title-header">

        <h1 class="title-text">

            EVALITA-LLM Leaderboard

        </h1>

        <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" class="title-link">

            <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">

                <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>

                <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>

            </svg>

            Open Italian LLM Leaderboard

        </a>

    </div>

    """


def create_credits_markdown():
    """Credits section."""
    return """

**This project has benefited from the following support:**



- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.



- πŸ’Ά **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.



- πŸ–₯️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.

"""


# Main initialization
def initialize_app():
    """Initialize the application ."""
    try:
        # Download snapshots
        queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
        results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

        if not (queue_success and results_success):
            logger.error("Failed to download required data")
            return None, None, None, None, None

        # Load leaderboard data
        leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
        finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
            EVAL_REQUESTS_PATH, EVAL_COLS)

        # Calculate theoretical max performance
        theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))

        return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max

    except Exception as e:
        logger.error(f"Error initializing app: {e}")
        return None, None, None, None, None


# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()

if LEADERBOARD_DF is None:
    # Fallback behavior
    logger.error("Failed to initialize app data")
    theoretical_max_combined_perf = 0.0


# Main Gradio interface
def create_gradio_interface():
    """The main Gradio interface."""
    demo = gr.Blocks(css=custom_css)

    with demo:
        # Titolo
        gr.HTML(create_title_html())
        gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

        # Tabs principali
        with gr.Tabs(elem_classes="tab-buttons") as tabs:
            # πŸ… Benchmark
            with gr.TabItem("πŸ… Benchmark"):
                if LEADERBOARD_DF is not None:
                    # Labels dei campi affiancate

                    with gr.Row():
                        gr.HTML(f"""

                        <div class="performance-metrics">

                            <div class="metric-label" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard.">

                                Models tested: {len(LEADERBOARD_DF)}

                            </div>

                            <div class="metric-label" title="Average accuracy of the evaluated models.">

                                Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}

                            </div>

                            <div class="metric-label" title="Standard deviation of the evaluated models' performance.">

                                Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}

                            </div>

                            <div class="metric-label" title="Best evaluated model.">

                                Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}

                            </div>

                            <div class="metric-label" title="Accuracy of the best evaluated model.">

                                Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}

                            </div>

                            <div class="metric-label" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard.">

                                Ideal model: {theoretical_max_combined_perf:.2f}

                            </div>

                        </div>

                        """)

                    # Grafici affiancati
                    with gr.Row():
                        gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
                        gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")

                    # Leaderboard
                    leaderboard = init_leaderboard(
                        LEADERBOARD_DF,
                        default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
                                           "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                        hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                        col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
                                                    "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
                    )

            # πŸ“ About
            with gr.TabItem("πŸ“ About"):
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")


            # πŸš€ Submit a new model to evaluate
            with gr.TabItem("πŸš€ Submit"):
                gr.Markdown("# πŸ“ Model Evaluation Request", elem_classes="markdown-text")
                gr.Markdown("""

                            **Fill out the form below to request evaluation of your model on EVALITA-LLM.**



                            Once submitted, our team will automatically receive a notification. We will evaluate the 

                            submission’s relevance for both research and commercial purposes, as well as assess its feasibility.

                            """, elem_classes="markdown-text")

                with gr.Row():
                    with gr.Column():
                        # HuggingFace model name field
                        model_name_input = gr.Textbox(
                            label="HuggingFace Model Name",
                            placeholder="e.g., microsoft/DialoGPT-medium",
                            info="Enter the complete model name as it appears on HuggingFace Hub (organization/model-name)",
                            elem_id="model-name-input"
                        )

                        # User email field
                        user_name_input = gr.Textbox(
                            label="Your email address",
                            placeholder="e.g., mario.rossi@example.com",
                            info="Enter your email address for communication",
                            elem_id="user-email-input"
                        )

                        # Affiliation field
                        user_affiliation_input = gr.Textbox(
                            label="Affiliation",
                            placeholder="e.g., University of Milan, Google Research, Freelancer",
                            info="Enter your affiliation (university, company, organization)",
                            elem_id="user-affiliation-input"
                        )

                # Submit button
                submit_request_button = gr.Button(
                    "πŸ“€ Submit Request",
                    variant="primary",
                    elem_id="submit-request-button"
                )

                # Result  area
                submission_status = gr.Markdown(elem_id="submission-status")

                # Connect button to function
                submit_request_button.click(
                    validate_and_submit_request,
                    inputs=[model_name_input, user_name_input, user_affiliation_input],
                    outputs=submission_status
                )

                # Additional information
                with gr.Accordion("ℹ️ Additional Information", open=False):
                    gr.Markdown("""

                                **What happens after submission:**

                                1. Your request is automatically sent to the EVALITA-LLM team

                                2. We verify that the model is accessible on HuggingFace

                                3. We contact you to confirm inclusion in the evaluation

                                4. The model is added to the evaluation queue



                                **Model requirements:**

                                - Model must be publicly accessible on HuggingFace Hub

                                - Must be compatible with the EleutherAI/lm-evaluation-harness framework

                                - Must have a license that allows evaluation



                                **Evaluation tasks:**

                                Your model will be evaluated on all tasks: TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL.

                                """, elem_classes="markdown-text")


            # Separators
            with gr.TabItem("β•‘", interactive=False):
                gr.Markdown("", elem_classes="markdown-text")

            # Task-specific tabs (Multiple Choice)
            if LEADERBOARD_DF is not None:
                for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
                    with gr.TabItem(f"{metadata['icon']}{task}"):
                        task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                        gr.Markdown(task_description, elem_classes="markdown-text")

                        leaderboard_task = update_task_leaderboard(
                            LEADERBOARD_DF.rename(columns={
                                f"{task} Prompt Average": "Prompt Average",
                                f"{task} Prompt Std": "Prompt Std",
                                f"{task} Best Prompt": "Best Prompt",
                                f"{task} Best Prompt Id": "Best Prompt Id",
                                task: "Comb. Perf. ⬆️"
                            }),
                            default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                               'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                            col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                                        'Prompt Average', 'Prompt Std', 'Best Prompt',
                                                        'Best Prompt Id']]
                        )

            # Separators
            with gr.TabItem("β”‚", interactive=False):
                gr.Markdown("", elem_classes="markdown-text")

            # Task-specific tabs (Generative)
            if LEADERBOARD_DF is not None:
                for task, metadata in TASK_METADATA_GENERATIVE.items():
                    with gr.TabItem(f"{metadata['icon']}{task}"):
                        task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                        gr.Markdown(task_description, elem_classes="markdown-text")

                        leaderboard_task = update_task_leaderboard(
                            LEADERBOARD_DF.rename(columns={
                                f"{task} Prompt Average": "Prompt Average",
                                f"{task} Prompt Std": "Prompt Std",
                                f"{task} Best Prompt": "Best Prompt",
                                f"{task} Best Prompt Id": "Best Prompt Id",
                                task: "Comb. Perf. ⬆️"
                            }),
                            default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                               'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                            col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                                        'Prompt Average', 'Prompt Std', 'Best Prompt',
                                                        'Best Prompt Id']]
                        )

        # Citation e Credits
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True
            )

        with gr.Accordion("πŸ“™ Credits", open=False):
            gr.Markdown(create_credits_markdown())

    return demo


# Create and configure the demo
demo = create_gradio_interface()

# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

# Launch configuration
if __name__ == "__main__":
    demo.queue(default_concurrency_limit=40).launch(
        debug=True,
        show_error=True
    )