File size: 6,743 Bytes
7c9a0e8
 
 
 
 
 
 
e3d1391
2dfed14
7c9a0e8
 
 
f5334eb
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879714
 
 
 
 
 
 
 
7c9a0e8
 
3879714
 
 
 
 
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe9ca7
7c9a0e8
 
 
 
 
 
 
8fe9ca7
7c9a0e8
8fe9ca7
7c9a0e8
 
8fe9ca7
7c9a0e8
8fe9ca7
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import spaces
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
import gradio as gr
import time
import copy
import numpy as np

BATCH_SIZE = 16
MAX_AUDIO_MINS = 30  # maximum audio input in minutes
N_WARMUP = 3

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "sdpa" if is_torch_sdpa_available() else "eager"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "openai/whisper-large-v3", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "eustlb/distil-large-v3-fr", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation
)

processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")

model.to(device)
distilled_model.to(device)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "fr", "task": "transcribe"},
    return_timestamps=True
)
pipe_forward = pipe._forward

distil_pipe = pipeline(
    "automatic-speech-recognition",
    model=distilled_model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=25,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "fr", "task": "transcribe"},
)
distil_pipe_forward = distil_pipe._forward

def warmup():
    inputs = np.random.randn(30 * pipe.feature_extractor.sampling_rate) 
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    for _ in range(N_WARMUP):
        _ = pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
        _ = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]

@spaces.GPU
def transcribe(inputs):
    # warmup the gpu 
    print("Warming up...")
    warmup()
    print("Models warmed up!")

    if inputs is None:
        raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")

    with open(inputs, "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60

    if audio_length_mins > MAX_AUDIO_MINS:
        raise gr.Error(
            f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes."
            f"Got an audio of length {round(audio_length_mins, 3)} minutes."
        )

    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    def _forward_distil_time(*args, **kwargs):
        global distil_runtime
        start_time = time.time()
        result = distil_pipe_forward(*args, **kwargs)
        distil_runtime = time.time() - start_time
        distil_runtime = round(distil_runtime, 2)
        return result

    distil_pipe._forward = _forward_distil_time
    distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
    yield distil_text, distil_runtime, None, None, None

    def _forward_time(*args, **kwargs):
        global runtime
        start_time = time.time()
        result = pipe_forward(*args, **kwargs)
        runtime = time.time() - start_time
        runtime = round(runtime, 2)
        return result

    pipe._forward = _forward_time
    text = pipe(inputs, batch_size=BATCH_SIZE)["text"]

    yield distil_text, distil_runtime, text, runtime

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.HTML(
            """
                <div style="text-align: center; max-width: 700px; margin: 0 auto;">
                  <div
                    style="
                      display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                    "
                  >
                    <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                      Whisper vs distil-large-v3-fr: Speed Comparison
                    </h1>
                  </div>
                </div>
            """
        )
        gr.HTML(
            f"""
            <p><a href="https://huggingface.co/eustlb/distil-large-v3-fr">distil-large-v3-fr</a> is a distilled variant 
            of the <a href="https://huggingface.co/openai/whisper-large-v3"> Whisper</a> model by OpenAI. Compared to Whisper, 
            distil-large-v3 runs 6x faster with 50% fewer parameters, while performing to within 1% word error rate (WER) on
            out-of-distribution evaluation data.</p>

            <p>In this demo, we perform a speed comparison between Whisper and distil-whisper-large-v3 in order to test this claim.
            Both models use the <a href="https://huggingface.co/distil-whisper/distil-large-v3#chunked-long-form"> chunked long-form transcription algorithm</a> 
            in 🤗 Transformers. To use distil-large-3-fr, check the code examples on the
            <a href="https://github.com/huggingface/distil-whisper#1-usage"> Distil-Whisper repository</a>. To ensure fair 
            usage of the Space, we ask that audio file inputs are kept to < 30 mins.</p>
            """
        )
        audio = gr.components.Audio(type="filepath", label="Audio input")
        button = gr.Button("Transcribe")
        with gr.Row():
            distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)")
            runtime = gr.components.Textbox(label="Whisper Transcription Time (s)")
        with gr.Row():
            distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True)
            transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True)
        button.click(
            fn=transcribe,
            inputs=audio,
            outputs=[distil_transcription, distil_runtime, transcription, runtime],
        )
        gr.Markdown("## Examples")
        gr.Examples(
            [["./assets/example_1.wav"], ["./assets/example_2.wav"]],
            audio,
            outputs=[distil_transcription, distil_runtime, transcription, runtime],
            fn=transcribe,
            cache_examples=False,
        )
    demo.queue(max_size=10).launch()