Spaces:
Sleeping
Sleeping
File size: 6,213 Bytes
8c3129f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Available model sizes
MODEL_CHOICES = ["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]
current_choice = "tiny"
DEFAULT_MODEL_NAME = f"openai/whisper-{current_choice}"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
# Initialize the pipeline with the default model
pipe = pipeline(
task="automatic-speech-recognition",
model=DEFAULT_MODEL_NAME,
chunk_length_s=30,
device=device,
)
def transcribe(model_size, inputs, task):
if inputs is None:
raise gr.Error(
"No audio file submitted! Please upload or record an audio file before submitting your request."
)
global current_choice
global pipe
current_choice = model_size
MODEL_NAME = f"openai/whisper-{model_size}"
if (
pipe.model.name_or_path != MODEL_NAME
): # Reload the pipeline if model has changed
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
text = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True,
)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)
)
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
)
ydl_opts = {
"outtmpl": filename,
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best",
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True,
)["text"]
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Audio(sources=["microphone"], type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo allows selection of any of the"
f" [OpenAI Whisper model sizes](https://huggingface.co/openai/whisper-large-v3) and Transformers to transcribe audio files"
" of arbitrary length. Large and above are multilingual."
" Based on https://huggingface.co/spaces/openai/whisper"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Textbox(
lines=1,
placeholder="Paste the URL to a YouTube video here",
label="YouTube URL",
),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs=["html", "text"],
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
f" [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface(
[mf_transcribe, file_transcribe, yt_transcribe],
["Microphone", "Audio file", "YouTube"],
)
demo.launch()
|