File size: 6,213 Bytes
8c3129f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os
import time

# Available model sizes
MODEL_CHOICES = ["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]

current_choice = "tiny"
DEFAULT_MODEL_NAME = f"openai/whisper-{current_choice}"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

# Initialize the pipeline with the default model
pipe = pipeline(
    task="automatic-speech-recognition",
    model=DEFAULT_MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


def transcribe(model_size, inputs, task):
    if inputs is None:
        raise gr.Error(
            "No audio file submitted! Please upload or record an audio file before submitting your request."
        )

    global current_choice
    global pipe

    current_choice = model_size

    MODEL_NAME = f"openai/whisper-{model_size}"
    if (
        pipe.model.name_or_path != MODEL_NAME
    ):  # Reload the pipeline if model has changed
        pipe = pipeline(
            task="automatic-speech-recognition",
            model=MODEL_NAME,
            chunk_length_s=30,
            device=device,
        )

    text = pipe(
        inputs,
        batch_size=BATCH_SIZE,
        generate_kwargs={"task": task},
        return_timestamps=True,
    )["text"]
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()

    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]

    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]

    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime(
            "%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)
        )
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(
            f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
        )

    ydl_opts = {
        "outtmpl": filename,
        "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best",
    }

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(
        inputs,
        batch_size=BATCH_SIZE,
        generate_kwargs={"task": task},
        return_timestamps=True,
    )["text"]

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
        gr.Audio(sources=["microphone"], type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    theme="default",
    title="Whisper: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo allows selection of any of the"
        f" [OpenAI Whisper model sizes](https://huggingface.co/openai/whisper-large-v3) and  Transformers to transcribe audio files"
        " of arbitrary length. Large and above are multilingual."
        " Based on https://huggingface.co/spaces/openai/whisper"
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
        gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    theme="default",
    title="Whisper: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
        f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and  Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
        gr.Textbox(
            lines=1,
            placeholder="Paste the URL to a YouTube video here",
            label="YouTube URL",
        ),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs=["html", "text"],
    theme="default",
    title="Whisper: Transcribe Audio",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
        f" [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and  Transformers to transcribe video files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface(
        [mf_transcribe, file_transcribe, yt_transcribe],
        ["Microphone", "Audio file", "YouTube"],
    )

demo.launch()