File size: 20,702 Bytes
599c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
"""
Data preprocessing for fine-tuning on Iain Morris articles
"""

import json
import re
from typing import List, Dict, Tuple
import pandas as pd
from datasets import Dataset
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ArticlePreprocessor:
    def __init__(self):
        """Initialize the preprocessor"""
        self.min_content_length = 500
        self.max_content_length = 8000
        self.system_prompt = """You are Iain Morris, a veteran telecom journalist with a razor-sharp pen and zero tolerance for industry BS. Your writing style is distinctive for:

PROVOCATIVE TITLES & OPENINGS:
- Always lead with conflict, failure, or impending doom
- Use dramatic, negative framing even for mundane topics
- Open with vivid scenarios that immediately establish tension
- Frame everything as battles, collisions, or disasters waiting to happen

SIGNATURE NEGATIVE ANALOGIES:
- Compare industry situations to train wrecks, collisions, explosions
- Use visceral, physical metaphors for business problems
- Reference pop culture disasters and failures
- Turn technical concepts into dramatic, often dark imagery

WRITING TECHNIQUE:
- Cynical, sarcastic commentary on industry players
- Technical expertise delivered with biting wit
- Assume readers are intelligent but skeptical
- Build articles around conflict narratives
- Use parenthetical asides for extra snark
- Quote industry figures, then immediately undercut them

Write compelling telecom news articles that grab readers by the throat from the first sentence and never let go."""

    def load_articles(self, filepath: str) -> List[Dict]:
        """
        Load articles from JSON file
        
        Args:
            filepath: Path to the JSON file containing articles
            
        Returns:
            List of article dictionaries
        """
        try:
            with open(filepath, 'r', encoding='utf-8') as f:
                articles = json.load(f)
            logger.info(f"Loaded {len(articles)} articles from {filepath}")
            return articles
        except Exception as e:
            logger.error(f"Error loading articles: {e}")
            return []

    def clean_content(self, content: str) -> str:
        """
        Clean article content for training
        
        Args:
            content: Raw article content
            
        Returns:
            Cleaned content
        """
        if not content:
            return ""
        
        # Remove URLs
        content = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', content)
        
        # Remove email addresses
        content = re.sub(r'\S+@\S+', '', content)
        
        # Remove excessive whitespace but preserve paragraph breaks
        content = re.sub(r'[ \t]+', ' ', content)  # Multiple spaces/tabs to single space
        content = re.sub(r'\n\s*\n\s*\n+', '\n\n', content)  # Multiple line breaks to double
        
        # Enhanced footer/header cleaning for new crawler format
        content = re.sub(r'Light Reading.*?All rights reserved\.?', '', content, flags=re.IGNORECASE)
        content = re.sub(r'Copyright.*?Light Reading', '', content, flags=re.IGNORECASE)
        content = re.sub(r'Copyright.*?Informa.*?TechTarget.*?registered office.*?', '', content, flags=re.IGNORECASE | re.DOTALL)
        content = re.sub(r'You May Also Like.*?$', '', content, flags=re.IGNORECASE | re.DOTALL)
        content = re.sub(r'Featured Story.*?$', '', content, flags=re.IGNORECASE | re.DOTALL)
        content = re.sub(r'Read more about:.*?$', '', content, flags=re.IGNORECASE | re.DOTALL)
        content = re.sub(r'Subscribe.*?newsletter', '', content, flags=re.IGNORECASE)
        content = re.sub(r'Follow.*?Twitter', '', content, flags=re.IGNORECASE)
        
        # Remove author bio sections (they appear at the end)
        content = re.sub(r'Iain Morris International Editor, Light Reading.*?$', '', content, flags=re.IGNORECASE | re.DOTALL)
        
        # Remove advertisement markers
        content = re.sub(r'\[Advertisement\]', '', content, flags=re.IGNORECASE)
        content = re.sub(r'ADVERTISEMENT', '', content, flags=re.IGNORECASE)
        
        # Clean up quotes and apostrophes
        content = content.replace('"', '"').replace('"', '"')
        content = content.replace(''', "'").replace(''', "'")
        
        # Remove trailing whitespace and normalize line endings
        content = '\n'.join(line.rstrip() for line in content.split('\n'))
        content = content.strip()
        
        return content

    def has_provocative_elements(self, title: str, content: str) -> bool:
        """
        Check if article has Iain Morris's provocative style elements
        
        Args:
            title: Article title
            content: Article content
            
        Returns:
            True if article has strong stylistic elements
        """
        # Provocative title indicators
        provocative_words = [
            'danger', 'threat', 'crisis', 'disaster', 'collapse', 'failure', 'fiasco',
            'wreck', 'crash', 'collision', 'explosion', 'doom', 'catastrophe',
            'doubt', 'question', 'challenge', 'attack', 'battle', 'war', 'fight',
            'gross', 'massive', 'huge', 'epic', 'monster', 'brutal'
        ]
        
        title_lower = title.lower()
        title_score = sum(1 for word in provocative_words if word in title_lower)
        
        # Negative analogy indicators in content
        analogy_patterns = [
            r'train wreck', r'off the rails', r'collision', r'explosion', r'fiasco',
            r'disaster', r'catastrophe', r'meltdown', r'implosion', r'crash',
            r'like.*disaster', r'as.*wreck', r'resembl.*catastrophe'
        ]
        
        content_lower = content.lower()
        analogy_score = sum(1 for pattern in analogy_patterns if re.search(pattern, content_lower))
        
        # Sarcastic/cynical indicators
        cynical_patterns = [
            r'of course', r'naturally', r'predictably', r'unsurprisingly',
            r'needless to say', r'obviously', r'clearly', r'evidently'
        ]
        
        cynical_score = sum(1 for pattern in cynical_patterns if re.search(pattern, content_lower))
        
        # Calculate total style score
        total_score = title_score + analogy_score + cynical_score
        
        return total_score >= 2  # Require at least 2 style elements

    def extract_topic_from_title(self, title: str) -> str:
        """
        Extract a topic prompt from the article title, preserving provocative framing
        
        Args:
            title: Article title
            
        Returns:
            Topic prompt for training
        """
        # Preserve provocative elements in the topic
        topic = title
        
        # For provocative titles, maintain the dramatic framing
        provocative_starters = [
            'danger', 'threat', 'crisis', 'disaster', 'collapse', 'failure',
            'doubt', 'question', 'challenge', 'attack', 'battle'
        ]
        
        title_lower = title.lower()
        is_provocative = any(starter in title_lower for starter in provocative_starters)
        
        if is_provocative:
            # Keep the provocative framing
            if topic.endswith('?'):
                topic = topic[:-1]
            return f"Analyze the controversy and implications of: {topic}"
        else:
            # Standard topic extraction for less provocative titles
            if topic.endswith('?'):
                topic = topic[:-1]
                if not topic.lower().startswith(('what', 'how', 'why', 'when', 'where', 'who')):
                    topic = f"Discuss the industry implications of {topic.lower()}"
            
            # Add context if too short
            if len(topic.split()) < 3:
                topic = f"Write about {topic} in the telecom industry"
        
        return topic

    def filter_articles(self, articles: List[Dict]) -> List[Dict]:
        """
        Filter articles based on quality criteria and prioritize provocative style
        
        Args:
            articles: List of article dictionaries
            
        Returns:
            Filtered list of articles, sorted by style strength
        """
        filtered = []
        style_scores = []
        
        for article in articles:
            content = article.get('content', '')
            title = article.get('title', '')
            
            # Skip if missing essential fields
            if not content or not title:
                continue
            
            # Skip if content is too short or too long
            if len(content) < self.min_content_length or len(content) > self.max_content_length:
                continue
            
            # Skip if title is too generic
            if len(title.split()) < 3:
                continue
            
            # Skip if content seems to be mostly navigation/UI elements
            if content.count('Click') > 5 or content.count('Subscribe') > 3:
                continue
            
            # Calculate style score for prioritization
            cleaned_content = self.clean_content(content)
            has_style = self.has_provocative_elements(title, cleaned_content)
            
            # Calculate detailed style score for sorting
            provocative_words = [
                'danger', 'threat', 'crisis', 'disaster', 'collapse', 'failure', 'fiasco',
                'wreck', 'crash', 'collision', 'explosion', 'doom', 'catastrophe',
                'doubt', 'question', 'challenge', 'attack', 'battle', 'war', 'fight',
                'gross', 'massive', 'huge', 'epic', 'monster', 'brutal'
            ]
            
            title_lower = title.lower()
            title_score = sum(1 for word in provocative_words if word in title_lower)
            
            analogy_patterns = [
                r'train wreck', r'off the rails', r'collision', r'explosion', r'fiasco',
                r'disaster', r'catastrophe', r'meltdown', r'implosion', r'crash',
                r'like.*disaster', r'as.*wreck', r'resembl.*catastrophe'
            ]
            
            content_lower = cleaned_content.lower()
            analogy_score = sum(1 for pattern in analogy_patterns if re.search(pattern, content_lower))
            
            cynical_patterns = [
                r'of course', r'naturally', r'predictably', r'unsurprisingly',
                r'needless to say', r'obviously', r'clearly', r'evidently'
            ]
            
            cynical_score = sum(1 for pattern in cynical_patterns if re.search(pattern, content_lower))
            
            total_style_score = title_score + analogy_score + cynical_score
            
            filtered.append(article)
            style_scores.append(total_style_score)
        
        # Sort by style score (highest first) to prioritize provocative articles
        sorted_pairs = sorted(zip(filtered, style_scores), key=lambda x: x[1], reverse=True)
        filtered = [article for article, score in sorted_pairs]
        
        # Count articles with strong style elements
        strong_style_count = sum(1 for score in style_scores if score >= 2)
        
        logger.info(f"Filtered {len(articles)} articles down to {len(filtered)} quality articles")
        logger.info(f"Articles with strong Iain Morris style elements: {strong_style_count}")
        
        return filtered

    def create_training_examples(self, articles: List[Dict]) -> List[Dict]:
        """
        Create training examples in instruction-response format
        
        Args:
            articles: List of article dictionaries
            
        Returns:
            List of training examples
        """
        training_examples = []
        
        for article in articles:
            title = article.get('title', '')
            content = self.clean_content(article.get('content', ''))
            
            if not title or not content:
                continue
            
            # Create topic prompt from title
            topic = self.extract_topic_from_title(title)
            
            # Create training example
            example = {
                'instruction': f"Write a telecom industry news article about: {topic}",
                'input': "",
                'output': f"# {title}\n\n{content}",
                'system': self.system_prompt
            }
            
            training_examples.append(example)
        
        logger.info(f"Created {len(training_examples)} training examples")
        return training_examples

    def create_chat_format(self, examples: List[Dict]) -> List[Dict]:
        """
        Convert examples to chat format for training
        
        Args:
            examples: List of training examples
            
        Returns:
            List of examples in chat format
        """
        chat_examples = []
        
        for example in examples:
            chat_example = {
                'messages': [
                    {
                        'role': 'system',
                        'content': example['system']
                    },
                    {
                        'role': 'user',
                        'content': example['instruction']
                    },
                    {
                        'role': 'assistant',
                        'content': example['output']
                    }
                ]
            }
            chat_examples.append(chat_example)
        
        return chat_examples

    def split_dataset(self, examples: List[Dict], train_ratio: float = 0.9) -> Tuple[List[Dict], List[Dict]]:
        """
        Split dataset into train and validation sets
        
        Args:
            examples: List of training examples
            train_ratio: Ratio of examples to use for training
            
        Returns:
            Tuple of (train_examples, val_examples)
        """
        split_idx = int(len(examples) * train_ratio)
        
        # Shuffle examples
        import random
        random.seed(42)
        shuffled = examples.copy()
        random.shuffle(shuffled)
        
        train_examples = shuffled[:split_idx]
        val_examples = shuffled[split_idx:]
        
        logger.info(f"Split dataset: {len(train_examples)} train, {len(val_examples)} validation")
        
        return train_examples, val_examples

    def save_dataset(self, examples: List[Dict], filepath: str):
        """
        Save dataset to JSON file
        
        Args:
            examples: List of examples
            filepath: Output file path
        """
        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(examples, f, indent=2, ensure_ascii=False)
        
        logger.info(f"Saved {len(examples)} examples to {filepath}")

    def create_hf_dataset(self, examples: List[Dict]) -> Dataset:
        """
        Create Hugging Face Dataset object
        
        Args:
            examples: List of training examples
            
        Returns:
            Hugging Face Dataset
        """
        return Dataset.from_list(examples)

    def process_articles(self, input_file: str, output_dir: str = "data"):
        """
        Complete preprocessing pipeline
        
        Args:
            input_file: Path to raw articles JSON file
            output_dir: Directory to save processed data
        """
        logger.info("Starting article preprocessing pipeline")
        
        # Load articles
        articles = self.load_articles(input_file)
        if not articles:
            logger.error("No articles loaded, exiting")
            return
        
        # Disable Filter articles
        filtered_articles = articles # self.filter_articles(articles)
        if not filtered_articles:
            logger.error("No articles passed filtering, exiting")
            return
        
        # Create training examples
        training_examples = self.create_training_examples(filtered_articles)
        if not training_examples:
            logger.error("No training examples created, exiting")
            return
        
        # Load additional training examples from supplementary files
        logger.info("Loading additional training examples from supplementary files")

        # Load general Iain Morris style examples
        try:
            with open('data/additional_training_examples.json', 'r', encoding='utf-8') as f:
                additional_examples = json.load(f)
            logger.info(f"Loaded {len(additional_examples)} additional training examples")
            
            # Convert chat format to training format and add to training_examples
            for example in additional_examples:
                if 'messages' in example and len(example['messages']) >= 3:
                    system_msg = example['messages'][0]['content']
                    user_msg = example['messages'][1]['content'] 
                    assistant_msg = example['messages'][2]['content']
                    
                    training_example = {
                        'instruction': user_msg,
                        'input': "",
                        'output': assistant_msg,
                        'system': system_msg
                    }
                    training_examples.append(training_example)
                    
        except Exception as e:
            logger.warning(f"Could not load additional_training_examples.json: {e}")

        # Load expanded telecom training dataset
        try:
            with open('data/expanded_train_dataset.json', 'r', encoding='utf-8') as f:
                expanded_examples = json.load(f)
            logger.info(f"Loaded {len(expanded_examples)} expanded training examples")
            
            # Convert chat format to training format and add to training_examples
            for example in expanded_examples:
                if 'messages' in example and len(example['messages']) >= 3:
                    system_msg = example['messages'][0]['content']
                    user_msg = example['messages'][1]['content']
                    assistant_msg = example['messages'][2]['content']
                    
                    training_example = {
                        'instruction': user_msg,
                        'input': "",
                        'output': assistant_msg,
                        'system': system_msg
                    }
                    training_examples.append(training_example)
                    
        except Exception as e:
            logger.warning(f"Could not load expanded_train_dataset.json: {e}")

        logger.info(f"Total training examples after adding supplementary data: {len(training_examples)}")
        
        # Convert to chat format
        chat_examples = self.create_chat_format(training_examples)
        
        # Split dataset
        train_examples, val_examples = self.split_dataset(chat_examples)
        
        # Save datasets
        self.save_dataset(train_examples, f"{output_dir}/train_dataset.json")
        self.save_dataset(val_examples, f"{output_dir}/val_dataset.json")
        self.save_dataset(training_examples, f"{output_dir}/processed_dataset.json")
        
        # Create and save HF datasets
        train_dataset = self.create_hf_dataset(train_examples)
        val_dataset = self.create_hf_dataset(val_examples)
        
        train_dataset.save_to_disk(f"{output_dir}/train_hf_dataset")
        val_dataset.save_to_disk(f"{output_dir}/val_hf_dataset")
        
        # Print summary
        print(f"\nPreprocessing Summary:")
        print(f"Original articles: {len(articles)}")
        print(f"Filtered articles: {len(filtered_articles)}")
        print(f"Training examples: {len(train_examples)}")
        print(f"Validation examples: {len(val_examples)}")
        print(f"Average article length: {sum(len(ex['messages'][2]['content']) for ex in train_examples) // len(train_examples)} characters")
        
        # Show sample
        if train_examples:
            print(f"\nSample training example:")
            sample = train_examples[0]
            print(f"User: {sample['messages'][1]['content'][:100]}...")
            print(f"Assistant: {sample['messages'][2]['content'][:200]}...")


def main():
    """
    Main function to run preprocessing
    """
    preprocessor = ArticlePreprocessor()
    preprocessor.process_articles("data/raw_articles.json")


if __name__ == "__main__":
    main()