File size: 4,034 Bytes
6781da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import threading

import streamlit as st
import cv2
import numpy as np
from transformers import pipeline
from PIL import Image, ImageDraw
from mtcnn import MTCNN
from streamlit_webrtc import webrtc_streamer
import logging

# Suppress transformers progress bars
logging.getLogger("transformers").setLevel(logging.ERROR)

lock = threading.Lock()
img_container = {"webcam": None,
                 "analzyed": None}

# Initialize the Hugging Face pipeline for facial emotion detection
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression")

# Initialize MTCNN for face detection
mtcnn = MTCNN()

# Function to analyze sentiment
def analyze_sentiment(face):
    # Convert face to RGB
    rgb_face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
    # Convert the face to a PIL image
    pil_image = Image.fromarray(rgb_face)
    # Analyze sentiment using the Hugging Face pipeline
    results = emotion_pipeline(pil_image)
    # Get the dominant emotion
    dominant_emotion = max(results, key=lambda x: x['score'])['label']
    return dominant_emotion

TEXT_SIZE = 3

# Function to detect faces, analyze sentiment, and draw a red box around them
def detect_and_draw_faces(frame):
    # Detect faces using MTCNN
    results = mtcnn.detect_faces(frame)
    
    # Draw on the frame
    for result in results:
        x, y, w, h = result['box']
        face = frame[y:y+h, x:x+w]
        sentiment = analyze_sentiment(face)
        cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 10)  # Thicker red box
        
        # Calculate position for the text background and the text itself
        text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[0]
        text_x = x
        text_y = y - 10
        background_tl = (text_x, text_y - text_size[1])
        background_br = (text_x + text_size[0], text_y + 5)
        
        # Draw black rectangle as background
        cv2.rectangle(frame, background_tl, background_br, (0, 0, 0), cv2.FILLED)
        # Draw white text on top
        cv2.putText(frame, sentiment, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, (255, 255, 255), 2)
    
    return frame

# Streamlit UI
st.markdown(
    """
    <style>
        .main {
            background-color: #FFFFFF;
        }
        .reportview-container .main .block-container{
            padding-top: 2rem;
        }
        h1 {
            color: #E60012;
            font-family: 'Arial Black', Gadget, sans-serif;
        }
        h2 {
            color: #E60012;
            font-family: 'Arial', sans-serif;
        }
        h3 {
            color: #333333;
            font-family: 'Arial', sans-serif;
        }
        .stButton button {
            background-color: #E60012;
            color: white;
            border-radius: 5px;
            font-size: 16px;
        }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Computer Vision Test Lab")
st.subheader("Facial Sentiment")

# Columns for input and output streams
col1, col2 = st.columns(2)

with col1:
    st.header("Input Stream")
    st.subheader("Webcam")
    video_placeholder = st.empty()

with col2:
    st.header("Output Stream")
    st.subheader("Analysis")
    output_placeholder = st.empty()

sentiment_placeholder = st.empty()

def video_frame_callback(frame):
    try:
        with lock:
            img = frame.to_ndarray(format="bgr24")
            img_container["webcam"] = img
            frame_with_boxes = detect_and_draw_faces(img)
            img_container["analyzed"] = frame_with_boxes

    except Exception as e:
        st.error(f"Error processing frame: {e}")

    return frame

ctx = webrtc_streamer(key="webcam", video_frame_callback=video_frame_callback)

while ctx.state.playing:
    with lock:
        print(img_container)
        img = img_container["webcam"]
        frame_with_boxes = img_container["analyzed"]

    if img is None:
        continue

    video_placeholder.image(img, channels="BGR")
    output_placeholder.image(frame_with_boxes, channels="BGR")