File size: 21,305 Bytes
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
// app.cpp - Modified version of eigen_analysis_corrected.cpp for Streamlit integration
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>

// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta) {
    auto f = [a, y, beta](double k) -> double {
        return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / 
               ((a * k + 1) * (k * k + k));  // Divide by y here
    };
    
    // Use numerical optimization to find the maximum
    // Grid search followed by golden section search
    double best_k = 1.0;
    double best_val = f(best_k);
    
    // Initial grid search over a wide range
    const int num_grid_points = 200;
    for (int i = 0; i < num_grid_points; ++i) {
        double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
        double val = f(k);
        if (val > best_val) {
            best_val = val;
            best_k = k;
        }
    }
    
    // Refine with golden section search
    double a_gs = std::max(0.01, best_k / 10.0);
    double b_gs = best_k * 10.0;
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    const double tolerance = 1e-10;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) > f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Multiply the result by y before returning
    return f((a_gs + b_gs) / 2.0) *y ;
}

// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta) {
    auto f = [a, y, beta](double t) -> double {
        return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / 
               ((a * t + 1) * (t * t + t) * y);  // Divide by y here
    };
    
    // Use numerical optimization to find the minimum
    // Grid search followed by golden section search
    double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
    double best_val = f(best_t);
    
    // Initial grid search over the range (-1/a, 0)
    const int num_grid_points = 200;
    for (int i = 1; i < num_grid_points; ++i) {
        // From slightly above -1/a to slightly below 0
        double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
        if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
        
        double val = f(t);
        if (val < best_val) {
            best_val = val;
            best_t = t;
        }
    }
    
    // Refine with golden section search
    double a_gs = -0.999/a; // Slightly above -1/a
    double b_gs = -0.001/a; // Slightly below 0
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    const double tolerance = 1e-10;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) < f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Multiply the result by y before returning
    return f((a_gs + b_gs) / 2.0) *y ;
}

int main(int argc, char* argv[]) {
    // ─── Inputs from command line ───────────────────────────────────────────
    if (argc != 5) {
        std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y>" << std::endl;
        return 1;
    }
    
    int n = std::stoi(argv[1]);
    int p = std::stoi(argv[2]);
    double a = std::stod(argv[3]);
    double y = std::stod(argv[4]);
    const double b = 1.0;
    
    std::cout << "Running with parameters: n = " << n << ", p = " << p 
              << ", a = " << a << ", y = " << y << std::endl;
    
    // ─── Beta range parameters ────────────────────────────────────────
    const int num_beta_points = 100; // More points for smoother curves
    std::vector<double> beta_values(num_beta_points);
    for (int i = 0; i < num_beta_points; ++i) {
        beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
    }
    
    // ─── Storage for results ────────────────────────────────────────
    std::vector<double> max_eigenvalues(num_beta_points);
    std::vector<double> min_eigenvalues(num_beta_points);
    std::vector<double> theoretical_max_values(num_beta_points);
    std::vector<double> theoretical_min_values(num_beta_points);
    
    // ─── Random‐Gaussian X and S_n ────────────────────────────────
    std::mt19937_64 rng{std::random_device{}()};
    std::normal_distribution<double> norm(0.0, 1.0);
    
    cv::Mat X(p, n, CV_64F);
    for(int i = 0; i < p; ++i)
        for(int j = 0; j < n; ++j)
            X.at<double>(i,j) = norm(rng);
    
    // ─── Process each beta value ─────────────────────────────────
    for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
        double beta = beta_values[beta_idx];
        
        // Compute theoretical values
        theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta);
        theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta);
        
        // ─── Build T_n matrix ──────────────────────────────────
        int k = static_cast<int>(std::floor(beta * p));
        std::vector<double> diags(p);
        std::fill_n(diags.begin(), k, a);
        std::fill_n(diags.begin()+k, p-k, b);
        std::shuffle(diags.begin(), diags.end(), rng);
        
        cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
        for(int i = 0; i < p; ++i){
            T_n.at<double>(i,i) = diags[i];
        }
        
        // ─── Form B_n = (1/n) * X * T_n * X^T ────────────
        cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
        
        // ─── Compute eigenvalues of B ────────────────────────────
        cv::Mat eigVals;
        cv::eigen(B, eigVals);
        std::vector<double> eigs(n);  
        for(int i = 0; i < n; ++i)
            eigs[i] = eigVals.at<double>(i, 0);
        
        max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
        min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
        
        // Progress indicator - modified to be less verbose for Streamlit
        if (beta_idx % 20 == 0) {
            std::cout << "Processing beta = " << beta 
                      << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
        }
    }
    
    // ─── Prepare canvas for plotting ────────────────────────────────
    const int H = 950, W = 1200; // Taller canvas to accommodate legend below
    cv::Mat canvas(H, W, CV_8UC3, cv::Scalar(250, 250, 250)); // Slightly off-white background
    
    // ─── Find min/max for scaling ───────────────────────────────────
    double min_y = std::numeric_limits<double>::max();
    double max_y = std::numeric_limits<double>::lowest();
    
    for (double v : max_eigenvalues) max_y = std::max(max_y, v);
    for (double v : min_eigenvalues) min_y = std::min(min_y, v);
    for (double v : theoretical_max_values) max_y = std::max(max_y, v);
    for (double v : theoretical_min_values) min_y = std::min(min_y, v);
    
    // Add some padding
    double y_padding = (max_y - min_y) * 0.15; // More padding for better spacing
    min_y -= y_padding;
    max_y += y_padding;
    
    // ─── Draw coordinate axes ───────────────────────────────────────
    const int margin = 100; // Larger margin for better spacing
    const int plot_width = W - 2 * margin;
    const int plot_height = H - 2 * margin - 150; // Reduced height to make room for legend below
    
    // Plot area background (light gray)
    cv::rectangle(canvas, 
                 cv::Point(margin, margin),
                 cv::Point(W - margin, margin + plot_height),
                 cv::Scalar(245, 245, 245), cv::FILLED);
    
    // X-axis (beta)
    cv::line(canvas, 
             cv::Point(margin, margin + plot_height),
             cv::Point(W - margin, margin + plot_height),
             cv::Scalar(40, 40, 40), 2);
    
    // Y-axis (eigenvalues)
    cv::line(canvas,
             cv::Point(margin, margin + plot_height),
             cv::Point(margin, margin),
             cv::Scalar(40, 40, 40), 2);
    
    // ─── Draw axes labels ────────────────────────────────────────────
    cv::putText(canvas, "Ξ²", 
                cv::Point(W - margin/2, margin + plot_height + 30),
                cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
                
    // Y-axis label (fixed - no rotation)
    cv::putText(canvas, "Eigenvalues", 
                cv::Point(margin/4, margin/2 - 10),
                cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2);
                
    // ─── Draw title ───────────────────────────────────────────────────
    std::stringstream title_ss;
    title_ss << std::fixed << std::setprecision(2);
    title_ss << "Eigenvalue Analysis: a = " << a << ", y = " << y;
    cv::putText(canvas, title_ss.str(),
                cv::Point(W/2 - 200, 45),
                cv::FONT_HERSHEY_COMPLEX, 1.2, cv::Scalar(0, 0, 0), 2);
    
    // ─── Draw grid lines ────────────────────────────────────────────────
    const int num_grid_lines = 11; // 0.0, 0.1, 0.2, ..., 1.0 for beta
    for (int i = 0; i < num_grid_lines; ++i) {
        // Horizontal grid lines
        int y_pos = margin + i * (plot_height / (num_grid_lines - 1));
        cv::line(canvas,
                 cv::Point(margin, y_pos),
                 cv::Point(W - margin, y_pos),
                 cv::Scalar(220, 220, 220), 1);
                 
        // Vertical grid lines
        int x_pos = margin + i * (plot_width / (num_grid_lines - 1));
        cv::line(canvas,
                 cv::Point(x_pos, margin),
                 cv::Point(x_pos, margin + plot_height),
                 cv::Scalar(220, 220, 220), 1);
                 
        // X-axis labels (beta values)
        double beta_val = static_cast<double>(i) / (num_grid_lines - 1);
        std::stringstream ss;
        ss << std::fixed << std::setprecision(1) << beta_val;
        cv::putText(canvas, ss.str(),
                    cv::Point(x_pos - 10, margin + plot_height + 30),
                    cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
                    
        // Y-axis labels (eigenvalue values)
        double eig_val = min_y + (max_y - min_y) * i / (num_grid_lines - 1);
        std::stringstream ss2;
        ss2 << std::fixed << std::setprecision(2) << eig_val;
        cv::putText(canvas, ss2.str(),
                    cv::Point(margin/2 - 40, margin + plot_height - i * (plot_height / (num_grid_lines - 1)) + 5),
                    cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
    }
    
    // ─── Draw the four curves ───────────────────────────────────────────
    // Convert data points to pixel coordinates
    auto to_point = [&](double beta, double val) -> cv::Point {
        int x = margin + static_cast<int>(beta * plot_width);
        int y = margin + plot_height - static_cast<int>((val - min_y) / (max_y - min_y) * plot_height);
        return cv::Point(x, y);
    };
    
    // Better colors for visibility
    cv::Scalar emp_max_color(60, 60, 220);    // Dark red
    cv::Scalar emp_min_color(220, 60, 60);    // Dark blue
    cv::Scalar theo_max_color(30, 180, 30);   // Dark green
    cv::Scalar theo_min_color(180, 30, 180);  // Dark purple
    
    // Empirical max eigenvalues (red)
    std::vector<cv::Point> max_eig_points;
    for (int i = 0; i < num_beta_points; ++i) {
        max_eig_points.push_back(to_point(beta_values[i], max_eigenvalues[i]));
    }
    cv::polylines(canvas, max_eig_points, false, emp_max_color, 3);
    
    // Empirical min eigenvalues (blue)
    std::vector<cv::Point> min_eig_points;
    for (int i = 0; i < num_beta_points; ++i) {
        min_eig_points.push_back(to_point(beta_values[i], min_eigenvalues[i]));
    }
    cv::polylines(canvas, min_eig_points, false, emp_min_color, 3);
    
    // Theoretical max values (green)
    std::vector<cv::Point> theo_max_points;
    for (int i = 0; i < num_beta_points; ++i) {
        theo_max_points.push_back(to_point(beta_values[i], theoretical_max_values[i]));
    }
    cv::polylines(canvas, theo_max_points, false, theo_max_color, 3);
    
    // Theoretical min values (purple)
    std::vector<cv::Point> theo_min_points;
    for (int i = 0; i < num_beta_points; ++i) {
        theo_min_points.push_back(to_point(beta_values[i], theoretical_min_values[i]));
    }
    cv::polylines(canvas, theo_min_points, false, theo_min_color, 3);
    
    // ─── Draw markers on the curves for better visibility ──────────────
    const int marker_interval = 10; // Show markers every 10 points
    for (int i = 0; i < num_beta_points; i += marker_interval) {
        // Max empirical eigenvalue markers
        cv::circle(canvas, max_eig_points[i], 5, emp_max_color, cv::FILLED);
        cv::circle(canvas, max_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
        
        // Min empirical eigenvalue markers
        cv::circle(canvas, min_eig_points[i], 5, emp_min_color, cv::FILLED);
        cv::circle(canvas, min_eig_points[i], 5, cv::Scalar(255, 255, 255), 1);
        
        // Theoretical max markers
        cv::drawMarker(canvas, theo_max_points[i], theo_max_color, cv::MARKER_DIAMOND, 10, 2);
        
        // Theoretical min markers
        cv::drawMarker(canvas, theo_min_points[i], theo_min_color, cv::MARKER_DIAMOND, 10, 2);
    }
    
    // ─── Draw legend BELOW the graph ────────────────────────────────────
    // Set up dimensions for the legend
    const int legend_width = 600;
    const int legend_height = 100;
    // Center the legend horizontally
    const int legend_x = W/2 - legend_width/2;
    // Position legend below the graph
    const int legend_y = margin + plot_height + 70;
    const int line_length = 40;
    const int line_spacing = 35;
    
    // Box around legend with shadow effect
    cv::rectangle(canvas,
                 cv::Point(legend_x + 3, legend_y + 3),
                 cv::Point(legend_x + legend_width + 3, legend_y + legend_height + 3),
                 cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
    cv::rectangle(canvas,
                 cv::Point(legend_x, legend_y),
                 cv::Point(legend_x + legend_width, legend_y + legend_height),
                 cv::Scalar(240, 240, 240), cv::FILLED); // Main box
    cv::rectangle(canvas,
                 cv::Point(legend_x, legend_y),
                 cv::Point(legend_x + legend_width, legend_y + legend_height),
                 cv::Scalar(0, 0, 0), 1); // Border
    
    // Legend title
    cv::putText(canvas, "Legend",
                cv::Point(legend_x + legend_width/2 - 30, legend_y + 20),
                cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
    cv::line(canvas,
             cv::Point(legend_x + 5, legend_y + 30),
             cv::Point(legend_x + legend_width - 5, legend_y + 30),
             cv::Scalar(150, 150, 150), 1);
    
    // Two legend entries per row, in two columns
    // First row
    // Empirical max (red)
    cv::line(canvas, 
             cv::Point(legend_x + 20, legend_y + 50),
             cv::Point(legend_x + 20 + line_length, legend_y + 50),
             emp_max_color, 3);
    cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 50), 5, emp_max_color, cv::FILLED);
    cv::putText(canvas, "Empirical Max Eigenvalue",
                cv::Point(legend_x + 20 + line_length + 10, legend_y + 50 + 5),
                cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
                
    // Empirical min (blue)
    cv::line(canvas, 
             cv::Point(legend_x + 20 + legend_width/2, legend_y + 50),
             cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 50),
             emp_min_color, 3);
    cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 50), 5, emp_min_color, cv::FILLED);
    cv::putText(canvas, "Empirical Min Eigenvalue",
                cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 50 + 5),
                cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
    
    // Second row
    // Theoretical max (green)
    cv::line(canvas, 
             cv::Point(legend_x + 20, legend_y + 80),
             cv::Point(legend_x + 20 + line_length, legend_y + 80),
             theo_max_color, 3);
    cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 80), 
                  theo_max_color, cv::MARKER_DIAMOND, 10, 2);
    cv::putText(canvas, "Theoretical Max Function",
                cv::Point(legend_x + 20 + line_length + 10, legend_y + 80 + 5),
                cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
                
    // Theoretical min (purple)
    cv::line(canvas, 
             cv::Point(legend_x + 20 + legend_width/2, legend_y + 80),
             cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 80),
             theo_min_color, 3);
    cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 80), 
                  theo_min_color, cv::MARKER_DIAMOND, 10, 2);
    cv::putText(canvas, "Theoretical Min Function",
                cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 80 + 5),
                cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1);
    
    // ─── Draw mathematical formulas in a box ──────────────────────────────
    cv::rectangle(canvas,
                 cv::Point(margin + 3, H - 80 + 3),
                 cv::Point(W - margin + 3, H - 20 + 3),
                 cv::Scalar(180, 180, 180), cv::FILLED); // Shadow
    cv::rectangle(canvas,
                 cv::Point(margin, H - 80),
                 cv::Point(W - margin, H - 20),
                 cv::Scalar(240, 240, 240), cv::FILLED); // Main box
    cv::rectangle(canvas,
                 cv::Point(margin, H - 80),
                 cv::Point(W - margin, H - 20),
                 cv::Scalar(0, 0, 0), 1); // Border
    
    std::string formula_text1 = "Max Function: max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)y]";
    std::string formula_text2 = "Min Function: min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)y]";
    
    cv::putText(canvas, formula_text1,
                cv::Point(margin + 20, H - 55),
                cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_max_color, 2);
                
    cv::putText(canvas, formula_text2,
                cv::Point(W/2 + 20, H - 55),
                cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_min_color, 2);
    
    // ─── Draw parameter info ────────────────────────────────────────────
    std::stringstream params_ss;
    params_ss << std::fixed << std::setprecision(2);
    params_ss << "Parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y;
    cv::putText(canvas, params_ss.str(),
                cv::Point(margin, 80),
                cv::FONT_HERSHEY_COMPLEX, 0.8, cv::Scalar(0, 0, 0), 1);
    
    // ─── Save the image to the output directory ───────────────────────────
    std::string output_path = "/app/output/eigenvalue_analysis.png";
    cv::imwrite(output_path, canvas);
    std::cout << "Plot saved as " << output_path << std::endl;
    
    return 0;
}