Spaces:
Running
Running
File size: 42,979 Bytes
2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 189b68e 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 b9621c6 a1879ff a71465e 28d6753 3aa90a1 57cea28 a71465e a1879ff 6181a36 a1879ff b9621c6 6181a36 02a25f1 cd66e4d 6181a36 cd66e4d 6181a36 02a25f1 6181a36 b041735 6181a36 b041735 6181a36 02a25f1 6181a36 b041735 6181a36 b041735 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 02a25f1 6181a36 2bdb7ce 8355fb9 6181a36 8355fb9 02a25f1 94228fc c08b46a 02a25f1 94228fc 6181a36 94228fc 6181a36 94228fc 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 02a25f1 6181a36 02a25f1 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 02a25f1 6181a36 02a25f1 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 2bdb7ce 6181a36 02a25f1 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 2bdb7ce 6181a36 02a25f1 6181a36 02a25f1 6181a36 2bdb7ce 02a25f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 |
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import torch
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Model configuration mapping for different API requirements and limits
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"Llama-4-Scout-17B-16E-Instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"Llama-4-Maverick-17B-128E-Instruct-FP8": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"gpt-4o-mini": {"max_tokens": 15000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o3-mini": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-mini": {"max_completion_tokens": 66000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-preview": {"max_tokens": 33000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft", "warning": None},
"Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
"Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
# Default configuration for other models
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
def prepare_api_params(messages, model_name):
"""Create appropriate API parameters based on model configuration"""
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
api_params = {"messages": messages, "model": model_name}
token_param = config["param_name"]
token_value = config[token_param]
api_params[token_param] = token_value
return api_params, config
def get_secret(key):
"""Retrieve a secret from environment or Streamlit secrets."""
if hasattr(st, "secrets") and key in st.secrets:
return st.secrets[key]
return os.environ.get(key)
def check_password():
correct_password = get_secret("password")
if not correct_password:
st.error("Admin password not configured in secrets or env var 'password'")
return False
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
pwd = st.text_input("Enter password to access AI features", type="password")
if pwd:
if pwd == correct_password:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required_packages = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1',
'plotly': '5.14.0',
'pandas': '2.0.0',
'python-pptx': '0.6.21',
'markdown': '3.4.3',
'fpdf': '1.7.2',
'matplotlib': '3.5.0',
'seaborn': '0.11.2',
'scipy': '1.7.3',
'huggingface_hub': '0.16.0',
}
missing = {}
for pkg, ver in required_packages.items():
try:
__import__(pkg if pkg != 'Pillow' else 'PIL')
except ImportError:
missing[pkg] = ver
if not missing:
return True
progress = st.progress(0)
status = st.empty()
for i, (pkg, ver) in enumerate(missing.items()):
status.text(f"Installing {pkg}...")
res = subprocess.run([sys.executable, "-m", "pip", "install", f"{pkg}>={ver}"], capture_output=True, text=True)
if res.returncode != 0:
st.error(f"Failed to install {pkg}: {res.stderr}")
return False
progress.progress((i + 1) / len(missing))
return True
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
try:
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets or env var 'github_token_api'")
return None
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
endpoint = "https://models.inference.ai.azure.com"
model_name = "gpt-4o"
client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(token))
return {
"client": client,
"model_name": model_name,
"endpoint": endpoint,
"last_loaded": datetime.now().isoformat(),
"category": MODEL_CONFIGS[model_name]["category"],
"api_version": MODEL_CONFIGS[model_name].get("api_version")
}
except Exception as e:
st.error(f"Error initializing AI model: {e}")
logger.error(str(e))
return None
def suggest_code_completion(code_snippet, models):
if not models:
st.error("AI models not initialized")
return None
try:
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
from openai import OpenAI
token = get_secret("github_token_api")
client = OpenAI(base_url="https://models.github.ai/inference", api_key=token)
messages = [{"role": "system", "content": "You are an expert in Manim animations."},
{"role": "user", "content": prompt}]
config = MODEL_CONFIGS.get(models["model_name"], MODEL_CONFIGS["default"])
params = {"messages": messages, "model": models["model_name"], config["param_name"]: config[config["param_name"]]}
response = client.chat.completions.create(**params)
content = response.choices[0].message.content
if "```python" in content:
content = content.split("```python")[1].split("```")[0]
elif "```" in content:
content = content.split("```")[1].split("```")[0]
if "Scene" not in content:
content = f"from manim import *\n\nclass MyScene(Scene):\n def construct(self):\n {content}"
return content
except Exception as e:
st.error(f"Error generating code: {e}")
logger.error(traceback.format_exc())
return None
QUALITY_PRESETS = {
"480p": {"resolution": "480p", "fps": "30"},
"720p": {"resolution": "720p", "fps": "30"},
"1080p": {"resolution": "1080p", "fps": "60"},
"4K": {"resolution": "2160p", "fps": "60"},
"8K": {"resolution": "4320p", "fps": "60"}
}
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Image Sequence": "png_sequence",
"SVG Image": "svg"
}
def highlight_code(code):
formatter = HtmlFormatter(style='monokai')
highlighted = highlight(code, PythonLexer(), formatter)
return highlighted, formatter.get_style_defs()
def generate_manim_preview(python_code):
scene_objects = []
if "Circle" in python_code: scene_objects.append("circle")
if "Square" in python_code: scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code: scene_objects.append("equation")
if "Text" in python_code: scene_objects.append("text")
if "Axes" in python_code: scene_objects.append("graph")
if "ThreeDScene" in python_code or "ThreeDAxes" in python_code: scene_objects.append("3D scene")
if "Sphere" in python_code: scene_objects.append("sphere")
if "Cube" in python_code: scene_objects.append("cube")
icons = {"circle":"β","square":"π²","equation":"π","text":"π","graph":"π","3D scene":"π§","sphere":"π","cube":"π§"}
icon_html = "".join(f'<span style="font-size:2rem; margin:0.3rem;">{icons[o]}</span>' for o in scene_objects)
preview_html = f"""
<div style="background-color:#000; width:100%; height:220px; border-radius:10px; display:flex; flex-direction:column; align-items:center; justify-content:center; color:white; text-align:center;">
<h3>Animation Preview</h3>
<div>{icon_html if icon_html else '<span style="font-size:2rem;">π¬</span>'}</div>
<p>Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}</p>
<p style="font-size:0.8rem; opacity:0.7;">Full rendering required for accurate preview</p>
</div>
"""
return preview_html
def render_latex_preview(latex):
if not latex:
return """
<div style="background:#f8f9fa; width:100%; height:100px; border-radius:5px; display:flex; align-items:center; justify-content:center; color:#6c757d;">
Enter LaTeX formula to see preview
</div>
"""
return f"""
<div style="background:#202124; width:100%; padding:20px; border-radius:5px; color:white; text-align:center;">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<div><h3>LaTeX Preview</h3><div id="math-preview">$$ {latex} $$</div><p style="font-size:0.8rem; opacity:0.7;">Use MathTex(r"{latex}") in Manim</p></div>
</div>
"""
def extract_scene_class_name(python_code):
match = re.search(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
return match.group(1) if match else "MyScene"
def prepare_audio_for_manim(audio_file, target_dir):
audio_dir = os.path.join(target_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
filename = f"audio_{int(time.time())}.mp3"
path = os.path.join(audio_dir, filename)
with open(path, "wb") as f: f.write(audio_file.getvalue())
return path
def mp4_to_gif(mp4, out, fps=15):
cmd = ["ffmpeg","-i",mp4,"-vf",f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse","-loop","0",out]
res = subprocess.run(cmd,capture_output=True,text=True)
return out if res.returncode==0 else None
def generate_manim_video(code, fmt, quality, speed, audio_path=None):
temp_dir = tempfile.mkdtemp(prefix="manim_render_")
try:
scene = extract_scene_class_name(code)
if audio_path and "with_sound" not in code:
code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + code
pat = re.search(f"class {scene}\\(.*?\\):", code)
if pat:
decor = f"@with_sound(\"{audio_path}\")\n"
code = code[:pat.start()] + decor + code[pat.start():]
path_py = os.path.join(temp_dir, "scene.py")
with open(path_py, "w", encoding="utf-8") as f: f.write(code)
qmap = {"480p":"-ql","720p":"-qm","1080p":"-qh","4K":"-qk","8K":"-qp"}
qflag = qmap.get(quality,"-qm")
if fmt=="png_sequence":
farg="--format=png"; extra=["--save_pngs"]
elif fmt=="svg":
farg="--format=svg"; extra=[]
else:
farg=f"--format={fmt}"; extra=[]
cmd = ["manim", path_py, scene, qflag, farg] + extra
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
output=[]
out_path=None; mp4_path=None
while True:
line = proc.stdout.readline()
if not line and proc.poll() is not None: break
output.append(line)
if "%" in line:
try:
p=float(line.split("%")[0].strip().split()[-1]);
except: pass
if "File ready at" in line:
chunk = line.split("File ready at")[-1].strip()
m=re.search(r'([\'"]?)(.*?\.(mp4|gif|webm|svg))\1',chunk)
if m:
out_path=m.group(2)
if out_path.endswith(".mp4"): mp4_path=out_path
proc.wait()
time.sleep(2)
data=None
if fmt=="gif" and (not out_path or not os.path.exists(out_path)) and mp4_path:
gif=os.path.join(temp_dir,f"{scene}_converted.gif")
if mp4_to_gif(mp4_path,gif): out_path=gif
if fmt=="png_sequence":
dirs=[os.path.join(temp_dir,"media","images",scene,"Animations")]
pngs=[]
for d in dirs:
if os.path.isdir(d):
pngs+= [os.path.join(d,f) for f in os.listdir(d) if f.endswith(".png")]
if pngs:
zipf=os.path.join(temp_dir,f"{scene}_pngs.zip")
with zipfile.ZipFile(zipf,"w") as z:
for p in pngs: z.write(p,os.path.basename(p))
data=open(zipf,"rb").read()
elif out_path and os.path.exists(out_path):
data=open(out_path,"rb").read()
else:
# fallback search
files=[]
for root,_,fs in os.walk(temp_dir):
for f in fs:
if f.endswith(f".{fmt}") and "partial" not in f:
files.append(os.path.join(root,f))
if files:
latest=max(files,key=os.path.getctime)
data=open(latest,"rb").read()
if fmt=="gif" and latest.endswith(".mp4"):
gif=os.path.join(temp_dir,f"{scene}_converted.gif")
if mp4_to_gif(latest,gif): data=open(gif,"rb").read()
if data:
size=len(data)/(1024*1024)
return data, f"β
Animation generated successfully! ({size:.1f} MB)"
else:
return None, "β Error: No output files generated.\n" + "".join(output)[:500]
except Exception as e:
logger.error(traceback.format_exc())
return None, f"β Error: {e}"
finally:
try: shutil.rmtree(temp_dir)
except: pass
def detect_input_calls(code):
calls=[]
for i,line in enumerate(code.splitlines(),1):
if 'input(' in line and not line.strip().startswith('#'):
m=re.search(r'input\([\'"](.+?)[\'"]\)',line)
prompt=m.group(1) if m else f"Input for line {i}"
calls.append({"line":i,"prompt":prompt})
return calls
def run_python_script(code, inputs=None, timeout=60):
result={"stdout":"","stderr":"","exception":None,"plots":[],"dataframes":[],"execution_time":0}
if inputs:
inject = f"""
__INPUT_VALUES={inputs}
__INPUT_INDEX=0
def input(prompt=''):
global __INPUT_INDEX
print(prompt,end='')
if __INPUT_INDEX<len(__INPUT_VALUES):
v=__INPUT_VALUES[__INPUT_INDEX]; __INPUT_INDEX+=1
print(v); return v
print(); return ''
"""
code = inject + code
with tempfile.TemporaryDirectory() as td:
plot_dir=os.path.join(td,'plots'); os.makedirs(plot_dir,exist_ok=True)
stdout_f=os.path.join(td,'stdout.txt')
stderr_f=os.path.join(td,'stderr.txt')
if 'plt' in code or 'matplotlib' in code:
if 'import matplotlib.pyplot as plt' not in code:
code="import matplotlib.pyplot as plt\n"+code
save_plots=f"""
import matplotlib.pyplot as plt,os
for i,num in enumerate(plt.get_fignums()):
plt.figure(num).savefig(os.path.join(r'{plot_dir}','plot_{{i}}.png'))
"""
code+=save_plots
if 'pd.' in code or 'import pandas' in code:
if 'import pandas as pd' not in code:
code="import pandas as pd\n"+code
dfcap=f"""
import pandas as pd, json,os
for name,val in globals().items():
if isinstance(val,pd.DataFrame):
info={{"name":name,"shape":val.shape,"columns":list(val.columns),"preview":val.head().to_html()}}
open(os.path.join(r'{td}',f'df_{{name}}.json'),'w').write(json.dumps(info))
"""
code+=dfcap
script=os.path.join(td,'script.py')
open(script,'w').write(code)
start=time.time()
try:
with open(stdout_f,'w') as so, open(stderr_f,'w') as se:
p=subprocess.Popen([sys.executable,script],stdout=so,stderr=se,cwd=td)
p.wait(timeout=timeout)
except subprocess.TimeoutExpired:
p.kill()
result["stderr"]+="\nTimeout"
result["exception"]="Timeout"
return result
result["execution_time"]=time.time()-start
result["stdout"]=open(stdout_f).read()
result["stderr"]=open(stderr_f).read()
for f in sorted(os.listdir(plot_dir)):
if f.endswith('.png'):
result["plots"].append(open(os.path.join(plot_dir,f),'rb').read())
for f in os.listdir(td):
if f.startswith('df_') and f.endswith('.json'):
result["dataframes"].append(json.load(open(os.path.join(td,f))))
return result
def display_python_script_results(result):
if not result: return
st.info(f"Execution completed in {result['execution_time']:.2f}s")
if result["exception"]:
st.error(f"Exception: {result['exception']}")
if result["stderr"]:
st.error("Errors:")
st.code(result["stderr"], language="bash")
if result["plots"]:
st.markdown("### Plots")
cols=st.columns(min(3,len(result["plots"])))
for i,p in enumerate(result["plots"]):
cols[i%len(cols)].image(p,use_column_width=True)
if result["dataframes"]:
st.markdown("### DataFrames")
for df in result["dataframes"]:
with st.expander(f"{df['name']} {df['shape']}"):
st.write(pd.read_html(df["preview"])[0])
if result["stdout"]:
st.markdown("### Stdout")
st.code(result["stdout"], language="bash")
def parse_animation_steps(code):
steps=[]
plays=re.findall(r'self\.play\((.*?)\)',code,re.DOTALL)
waits=re.findall(r'self\.wait\((.*?)\)',code,re.DOTALL)
cum=0
for i,pc in enumerate(plays):
anims=[a.strip() for a in pc.split(',')]
dur=1.0
if i<len(waits):
m=re.search(r'(\d+\.?\d*)',waits[i])
if m: dur=float(m.group(1))
steps.append({"id":i+1,"type":"play","animations":anims,"duration":dur,"start_time":cum,"code":f"self.play({pc})"})
cum+=dur
return steps
def generate_code_from_timeline(steps,orig):
m=re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)',orig,re.DOTALL)
if not m: return orig
header=m.group(1)
new=[header]
indent=" "
for s in sorted(steps,key=lambda x:x["id"]):
new.append(f"{indent}{s['code']}")
if s["duration"]>0:
new.append(f"{indent}self.wait({s['duration']})")
return "\n".join(new)
def create_timeline_editor(code):
st.markdown("### ποΈ Animation Timeline Editor")
if not code:
st.warning("Add animation code first")
return code
steps=parse_animation_steps(code)
if not steps:
st.warning("No steps detected")
return code
df=pd.DataFrame(steps)
st.markdown("#### Animation Timeline")
fig=px.timeline(df,x_start="start_time",x_end=df["start_time"]+df["duration"],y="id",color="type",hover_name="animations",labels={"id":"Step","start_time":"Time(s)"})
fig.update_layout(height=300,xaxis=dict(title="Time(s)",rangeslider_visible=True))
st.plotly_chart(fig,use_container_width=True)
sel=st.selectbox("Select Step:",options=df["id"],format_func=lambda x:f"Step {x}")
new_dur=st.number_input("Duration(s):",min_value=0.1,max_value=10.0,value=float(df[df["id"]==sel]["duration"].iloc[0]),step=0.1)
action=st.selectbox("Action:",["Update Duration","Move Up","Move Down","Delete"])
if st.button("Apply"):
idx=df[df["id"]==sel].index[0]
if action=="Update Duration":
df.at[idx,"duration"]=new_dur
elif action=="Move Up" and sel>1:
j=df[df["id"]==sel-1].index[0]
df.at[idx,"id"],df.at[j,"id"]=sel-1,sel
elif action=="Move Down" and sel<len(df):
j=df[df["id"]==sel+1].index[0]
df.at[idx,"id"],df.at[j,"id"]=sel+1,sel
elif action=="Delete":
df=df[df["id"]!=sel]
df["id"]=range(1,len(df)+1)
cum=0
for i in df.sort_values("id").index:
df.at[i,"start_time"]=cum; cum+=df.at[i,"duration"]
new_code=generate_code_from_timeline(df.to_dict('records'),code)
st.success("Timeline updated, code regenerated.")
return new_code
return code
def export_to_educational_format(video_data,fmt,title,explanation,temp_dir):
try:
if fmt=="powerpoint":
import pptx
from pptx.util import Inches
prs=pptx.Presentation()
s0=prs.slides.add_slide(prs.slide_layouts[0]); s0.shapes.title.text=title; s0.placeholders[1].text="Created with Manim"
s1=prs.slides.add_slide(prs.slide_layouts[5]); s1.shapes.title.text="Animation"
vid_path=os.path.join(temp_dir,"anim.mp4"); open(vid_path,"wb").write(video_data)
try:
s1.shapes.add_movie(vid_path,Inches(1),Inches(1.5),Inches(8),Inches(4.5))
except:
thumb=os.path.join(temp_dir,"thumb.png")
subprocess.run(["ffmpeg","-i",vid_path,"-ss","00:00:01","-vframes","1",thumb],check=True)
s1.shapes.add_picture(thumb,Inches(1),Inches(1.5),Inches(8),Inches(4.5))
if explanation:
s2=prs.slides.add_slide(prs.slide_layouts[1]); s2.shapes.title.text="Explanation"; s2.placeholders[1].text=explanation
out=os.path.join(temp_dir,f"{title.replace(' ','_')}.pptx"); prs.save(out)
return open(out,"rb").read(),"pptx"
if fmt=="html":
html=f"""<!DOCTYPE html><html><head><title>{title}</title>
<style>body{{font-family:Arial;max-width:800px;margin:auto;padding:20px}}
.controls button{{margin-right:10px;padding:5px 10px}}</style>
<script>window.onload=function(){{const v=document.getElementById('anim');
document.getElementById('play').onclick=()=>v.play();
document.getElementById('pause').onclick=()=>v.pause();
document.getElementById('restart').onclick=()=>{{v.currentTime=0;v.play()}};
}};</script>
</head><body><h1>{title}</h1>
<video id="anim" width="100%" controls><source src="data:video/mp4;base64,{base64.b64encode(video_data).decode()}" type="video/mp4"></video>
<div class="controls"><button id="play">Play</button><button id="pause">Pause</button><button id="restart">Restart</button></div>
<div class="explanation">{markdown.markdown(explanation)}</div>
</body></html>"""
out=os.path.join(temp_dir,f"{title.replace(' ','_')}.html"); open(out,"w").write(html)
return open(out,"rb").read(),"html"
if fmt=="sequence":
from fpdf import FPDF
vid=os.path.join(temp_dir,"anim.mp4"); open(vid,"wb").write(video_data)
fr_dir=os.path.join(temp_dir,"frames"); os.makedirs(fr_dir,exist_ok=True)
subprocess.run(["ffmpeg","-i",vid,"-r","1",os.path.join(fr_dir,"frame_%03d.png")],check=True)
pdf=FPDF(); pdf.set_auto_page_break(True,15)
pdf.add_page(); pdf.set_font("Arial","B",20); pdf.cell(190,10,title,0,1,"C")
segs=explanation.split("##") if explanation else ["No explanation"]
imgs=sorted([f for f in os.listdir(fr_dir) if f.endswith(".png")])
for i,img in enumerate(imgs):
pdf.add_page(); pdf.image(os.path.join(fr_dir,img),10,10,190)
pdf.ln(100); pdf.set_font("Arial","B",12); pdf.cell(190,10,f"Step {i+1}",0,1)
pdf.set_font("Arial","",10); pdf.multi_cell(190,5,segs[min(i,len(segs)-1)].strip())
out=os.path.join(temp_dir,f"{title.replace(' ','_')}_seq.pdf"); pdf.output(out)
return open(out,"rb").read(),"pdf"
except Exception as e:
logger.error(traceback.format_exc())
return None,None
def main():
if 'init' not in st.session_state:
st.session_state.init=True
st.session_state.video_data=None
st.session_state.status=None
st.session_state.ai_models=None
st.session_state.generated_code=""
st.session_state.code=""
st.session_state.temp_code=""
st.session_state.editor_key=str(uuid.uuid4())
st.session_state.packages_checked=False
st.session_state.latex_formula=""
st.session_state.audio_path=None
st.session_state.image_paths=[]
st.session_state.custom_library_result=""
st.session_state.python_script="""import matplotlib.pyplot as plt
import numpy as np
# Example: Create a simple plot
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
"""
st.session_state.python_result=None
st.session_state.settings={"quality":"720p","format_type":"mp4","animation_speed":"Normal"}
st.session_state.password_entered=False
st.set_page_config(page_title="Manim Animation Studio", page_icon="π¬", layout="wide")
st.markdown("""
<style>
/* custom CSS */
</style>
""", unsafe_allow_html=True)
st.markdown("<h1 style='text-align:center;'>π¬ Manim Animation Studio</h1>", unsafe_allow_html=True)
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked=True
else:
st.error("Failed to install packages"); st.stop()
if not ACE_EDITOR_AVAILABLE:
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE=True
except ImportError:
pass
tabs = st.tabs(["β¨ Editor","π€ AI Assistant","π LaTeX Formulas","π¨ Assets","ποΈ Timeline","π Educational Export","π Python Runner"])
# --- Editor Tab ---
with tabs[0]:
col1,col2=st.columns([3,2])
with col1:
st.markdown("### π Animation Editor")
mode=st.radio("Input code:",["Type Code","Upload File"],key="editor_mode")
if mode=="Upload File":
up=st.file_uploader("Upload .py",type=["py"],key="file_up")
if up:
txt=up.getvalue().decode("utf-8")
st.session_state.code=txt; st.session_state.temp_code=txt
if ACE_EDITOR_AVAILABLE:
code_in=st_ace(value=st.session_state.code,language="python",theme="monokai",min_lines=20,key=f"ace_{st.session_state.editor_key}")
else:
code_in=st.text_area("Code",value=st.session_state.code,height=400,key=f"ta_{st.session_state.editor_key}")
if code_in!=st.session_state.code:
st.session_state.code=code_in; st.session_state.temp_code=code_in
if st.button("π Generate Animation",key="gen"):
if not st.session_state.code.strip():
st.error("Enter code first")
else:
sc=extract_scene_class_name(st.session_state.code)
if sc=="MyScene" and "class MyScene" not in st.session_state.code:
df="""\nclass MyScene(Scene):\n def construct(self):\n text=Text("Default Scene"); self.play(Write(text)); self.wait(2)\n"""
st.session_state.code+=df; st.warning("No scene class; added default")
with st.spinner("Rendering..."):
d,s=generate_manim_video(st.session_state.code,st.session_state.settings["format_type"],st.session_state.settings["quality"],ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],st.session_state.audio_path)
st.session_state.video_data=d; st.session_state.status=s
with col2:
st.markdown("### π₯οΈ Preview & Output")
if st.session_state.code:
st.markdown("<div style='border:1px solid #ccc;padding:10px;'>",unsafe_allow_html=True)
st.components.v1.html(generate_manim_preview(st.session_state.code),height=250)
st.markdown("</div>",unsafe_allow_html=True)
if st.session_state.video_data:
fmt=st.session_state.settings["format_type"]
if fmt=="png_sequence":
st.download_button("β¬οΈ Download PNG Zip",st.session_state.video_data,file_name=f"frames_{int(time.time())}.zip")
elif fmt=="svg":
try: st.components.v1.html(st.session_state.video_data.decode('utf-8'),height=400)
except: pass
st.download_button("β¬οΈ Download SVG",st.session_state.video_data,file_name=f"anim.svg")
else:
st.video(st.session_state.video_data,format=fmt)
st.download_button(f"β¬οΈ Download {fmt.upper()}",st.session_state.video_data,file_name=f"anim.{fmt}")
if st.session_state.status:
if "β" in st.session_state.status: st.error(st.session_state.status)
else: st.success(st.session_state.status)
# --- AI Assistant Tab ---
with tabs[1]:
st.markdown("### π€ AI Animation Assistant")
if check_password():
if not st.session_state.ai_models:
st.session_state.ai_models=init_ai_models_direct()
# Debug & selection & generation (as in original)
with st.expander("π§ Debug Connection"):
if st.button("Test API Connection"):
with st.spinner("Testing..."):
try:
token=get_secret("github_token_api")
if not token: st.error("Token missing"); st.stop()
model=st.session_state.ai_models["model_name"]
from openai import OpenAI
client=OpenAI(base_url="https://models.github.ai/inference",api_key=token)
params={"messages":[{"role":"system","content":"You are a helpful assistant."},{"role":"user","content":"Hi"}],"model":model}
params[MODEL_CONFIGS[model]["param_name"]]=MODEL_CONFIGS[model][MODEL_CONFIGS[model]["param_name"]]
resp=client.chat.completions.create(**params)
if resp and resp.choices:
st.success("β
Connected")
else: st.error("No response")
except Exception as e:
st.error(f"Error: {e}")
st.markdown("### π€ Model Selection")
cats={}
for m,cfg in MODEL_CONFIGS.items():
if m!="default":
cats.setdefault(cfg["category"],[]).append(m)
cat_tabs=st.tabs(sorted(cats.keys()))
for i,cat in enumerate(sorted(cats.keys())):
with cat_tabs[i]:
for m in sorted(cats[cat]):
cfg=MODEL_CONFIGS[m]
sel=(m==st.session_state.ai_models["model_name"])
st.markdown(f"<div style='background:#f8f9fa;padding:10px;border-left:4px solid {'#0d6efd' if sel else '#4F46E5'};margin-bottom:8px;'>"
f"<h4>{m}</h4><p>Max Tokens: {cfg.get(cfg['param_name'],'?')}</p><p>API Ver: {cfg['api_version'] or 'default'}</p></div>",
unsafe_allow_html=True)
if st.button("Select" if not sel else "Selected β",key=f"sel_{m}",disabled=sel):
st.session_state.ai_models["model_name"]=m
st.experimental_rerun()
if st.session_state.ai_models:
st.info(f"Using model: {st.session_state.ai_models['model_name']}")
if st.session_state.ai_models and "client" in st.session_state.ai_models:
st.markdown("#### Generate Animation from Description")
ideas=["...","3D sphere to torus","Pythagorean proof","Fourier transform","Neural network propagation","Integration area"]
sel=st.selectbox("Try idea",ideas)
prompt=sel if sel!="..." else ""
inp=st.text_area("Your prompt or code",value=prompt,height=150)
if st.button("Generate Animation Code"):
if inp:
with st.spinner("Generating..."):
code=suggest_code_completion(inp,st.session_state.ai_models)
if code:
st.session_state.generated_code=code
else: st.error("Failed")
else: st.warning("Enter prompt")
if st.session_state.generated_code:
st.code(st.session_state.generated_code,language="python")
c1,c2=st.columns(2)
if c1.button("Use This Code"):
st.session_state.code=st.session_state.generated_code
st.experimental_rerun()
if c2.button("Render Preview"):
vd,stt=generate_manim_video(st.session_state.generated_code,"mp4","480p",1.0)
if vd: st.video(vd); st.download_button("Download Preview",vd,file_name="preview.mp4")
else: st.error(f"Error: {stt}")
else:
st.info("Enter password to access AI")
# --- LaTeX Formulas Tab ---
with tabs[2]:
st.markdown("### π LaTeX Formula Builder")
c1,c2=st.columns([3,2])
with c1:
lt=st.text_area("LaTeX Formula",value=st.session_state.latex_formula,placeholder=r"e^{i\pi}+1=0",height=100)
st.session_state.latex_formula=lt
categories={
"Basic Math":[{"name":"Fraction","latex":r"\frac{a}{b}"},...],
# fill in as original categories...
}
tab_cats=st.tabs(list(categories.keys()))
for i,(cat,forms) in enumerate(categories.items()):
with tab_cats[i]:
for f in forms:
if st.button(f["name"],key=f"lt_{f['name']}"):
st.session_state.latex_formula=f["latex"]; st.experimental_rerun()
if lt:
snippet=f"""
formula=MathTex(r"{lt}")
self.play(Write(formula))
self.wait(2)
"""
st.code(snippet,language="python")
if st.button("Insert into Editor"):
if "def construct" in st.session_state.code:
lines=st.session_state.code.split("\n")
idx=[i for i,l in enumerate(lines) if "def construct" in l][0]
indent=re.match(r"(\s*)",lines[idx+1]).group(1) if idx+1<len(lines) else " "
insert="\n".join(indent+line for line in snippet.strip().split("\n"))
lines.insert(idx+2,insert)
st.session_state.code="\n".join(lines)
st.experimental_rerun()
else:
base=f"""from manim import *\n\nclass LatexScene(Scene):\n def construct(self):\n {snippet.strip().replace('\n','\n ')}\n"""
st.session_state.code=base; st.experimental_rerun()
with c2:
st.components.v1.html(render_latex_preview(st.session_state.latex_formula),height=300)
# --- Assets Tab ---
with tabs[3]:
st.markdown("### π¨ Asset Management")
a1,a2=st.columns(2)
with a1:
imgs=st.file_uploader("Upload Images",type=["png","jpg","jpeg","svg"],accept_multiple_files=True)
if imgs:
d="manim_assets/images";os.makedirs(d,exist_ok=True)
for up in imgs:
ext=up.name.split(".")[-1]
fn=f"img_{int(time.time())}_{uuid.uuid4().hex[:8]}.{ext}"
p=os.path.join(d,fn)
open(p,"wb").write(up.getvalue())
st.session_state.image_paths.append({"name":up.name,"path":p})
st.success("Images uploaded")
if st.session_state.image_paths:
for ip in st.session_state.image_paths:
st.image(Image.open(ip["path"]),caption=ip["name"],width=100)
if st.button(f"Use {ip['name']}",key=f"use_img_{ip['name']}"):
code=f"""
image=ImageMobject(r"{ip['path']}")
self.play(FadeIn(image))
self.wait(1)
"""
st.session_state.code+=code; st.experimental_rerun()
with a2:
au=st.file_uploader("Upload Audio",type=["mp3","wav","ogg"])
if au:
d="manim_assets/audio";os.makedirs(d,exist_ok=True)
fn=f"audio_{int(time.time())}.{au.name.split('.')[-1]}"
p=os.path.join(d,fn)
open(p,"wb").write(au.getvalue())
st.session_state.audio_path=p
st.audio(au)
st.success("Audio uploaded")
# --- Timeline Tab ---
with tabs[4]:
updated=create_timeline_editor(st.session_state.code)
if updated!=st.session_state.code:
st.session_state.code=updated; st.experimental_rerun()
# --- Educational Export Tab ---
with tabs[5]:
st.markdown("### π Educational Export")
if not st.session_state.video_data:
st.warning("Generate animation first")
else:
title=st.text_input("Animation Title","Manim Animation")
expl=st.text_area("Explanation",height=150)
fmt=st.selectbox("Format",["PowerPoint Presentation","Interactive HTML","Explanation Sequence PDF"])
if st.button("Export"):
mp={"PowerPoint Presentation":"powerpoint","Interactive HTML":"html","Explanation Sequence PDF":"sequence"}
data,typ=export_to_educational_format(st.session_state.video_data,mp[fmt],title,expl,tempfile.mkdtemp())
if data:
ext={"powerpoint":"pptx","html":"html","sequence":"pdf"}[typ]
st.download_button("Download",data,file_name=f"{title.replace(' ','_')}.{ext}")
else: st.error("Export failed")
# --- Python Runner Tab ---
with tabs[6]:
st.markdown("### π Python Script Runner")
examples={
"Basic Plot":st.session_state.python_script,
"Input Example":"""# input demo...""",
"DataFrame":"""import pandas as pd...""",
}
choice=st.selectbox("Examples",list(examples.keys()))
code=examples[choice] if choice in examples else st.session_state.python_script
if ACE_EDITOR_AVAILABLE:
code_in=st_ace(value=code,language="python",theme="monokai",min_lines=15,key=f"pyace_{st.session_state.editor_key}")
else:
code_in=st.text_area("Code",value=code,height=400,key=f"pyta_{st.session_state.editor_key}")
st.session_state.python_script=code_in
calls=detect_input_calls(code_in)
vals=[]
if calls:
st.markdown("Provide inputs:")
for i,c in enumerate(calls):
v=st.text_input(c["prompt"],key=f"inp_{i}")
vals.append(v)
timeout=st.slider("Timeout",5,300,30)
if st.button("βΆοΈ Run"):
res=run_python_script(code_in,vals,timeout)
st.session_state.python_result=res
if st.session_state.python_result:
display_python_script_results(st.session_state.python_result)
if st.session_state.python_result["plots"]:
st.markdown("Add plot to animation:")
for i,p in enumerate(st.session_state.python_result["plots"]):
st.image(p);
if st.button(f"Use Plot {i+1}",key=f"use_plot_{i}"):
path=tempfile.NamedTemporaryFile(delete=False,suffix=".png").name
open(path,"wb").write(p)
code=f"""
plot_img=ImageMobject(r"{path}")
self.play(FadeIn(plot_img))
self.wait(1)
"""
st.session_state.code+=code; st.experimental_rerun()
if __name__ == "__main__":
main()
|