File size: 12,479 Bytes
d26f860
 
 
 
 
 
 
fe7a40d
d26f860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ceb202
d26f860
 
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
d26f860
 
 
 
 
68e4cf6
 
 
 
 
 
 
d26f860
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
 
 
d26f860
 
38537cb
 
 
 
 
 
d26f860
48c8ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e8ae6c
d26f860
ac129b1
 
 
48c8ddc
d26f860
 
631b8a1
 
 
 
 
 
 
 
 
d26f860
 
 
631b8a1
 
d26f860
48c8ddc
d26f860
48c8ddc
 
 
 
 
bb53524
 
0011db0
bb53524
0011db0
bb53524
 
 
0011db0
 
 
 
bb53524
 
 
ac129b1
d26f860
 
a0a3167
 
 
 
 
 
 
 
0011db0
d26f860
bb53524
d26f860
0011db0
bb53524
 
 
d26f860
bb53524
109cb78
ac129b1
d26f860
 
 
 
 
631b8a1
d26f860
631b8a1
d26f860
 
631b8a1
d26f860
631b8a1
 
d26f860
407d216
d26f860
 
 
 
 
 
 
 
 
 
 
1aaf383
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import sqlite3
import gradio as gr
from dog_database import get_dog_description, dog_data
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from search_history import create_history_tab, create_history_component

def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):

    with gr.TabItem("Breed Recommendation"):
        with gr.Tabs():
            with gr.Tab("Find by Criteria"):
                gr.HTML("""
                    <div style='
                        text-align: center;
                        padding: 20px 0;
                        margin: 15px 0;
                        background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
                        border-radius: 10px;
                    '>
                        <p style='
                            font-size: 1.2em;
                            margin: 0;
                            padding: 0 20px;
                            line-height: 1.5;
                            background: linear-gradient(90deg, #4299e1, #48bb78);
                            -webkit-background-clip: text;
                            -webkit-text-fill-color: transparent;
                            font-weight: 600;
                        '>
                            Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
                        </p>
                    </div>
                """)

                with gr.Row():
                    with gr.Column():
                        living_space = gr.Radio(
                            choices=["apartment", "house_small", "house_large"],
                            label="What type of living space do you have?",
                            info="Choose your current living situation",
                            value="apartment"
                        )

                        yard_access = gr.Radio(
                            choices=["no_yard", "shared_yard", "private_yard"],
                            label="Yard Access Type",
                            info="Available outdoor space",
                            value="no_yard"
                        )

                        exercise_time = gr.Slider(
                            minimum=0,
                            maximum=180,
                            value=60,
                            label="Daily exercise time (minutes)",
                            info="Consider walks, play time, and training"
                        )

                        exercise_type = gr.Radio(
                            choices=["light_walks", "moderate_activity", "active_training"],
                            label="Exercise Style",
                            info="What kind of activities do you prefer?",
                            value="moderate_activity"
                        )


                        grooming_commitment = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Grooming commitment level",
                            info="Low: monthly, Medium: weekly, High: daily",
                            value="medium"
                        )

                    with gr.Column():
                        experience_level = gr.Radio(
                            choices=["beginner", "intermediate", "advanced"],
                            label="Dog ownership experience",
                            info="Be honest - this helps find the right match",
                            value="beginner"
                        )

                        time_availability = gr.Radio(
                            choices=["limited", "moderate", "flexible"],
                            label="Time Availability",
                            info="Time available for dog care daily",
                            value="moderate"
                        )

                        has_children = gr.Checkbox(
                            label="Have children at home",
                            info="Helps recommend child-friendly breeds"
                        )

                        children_age = gr.Radio(
                            choices=["toddler", "school_age", "teenager"],
                            label="Children's Age Group",
                            info="Helps match with age-appropriate breeds",
                            visible=False  # 默認隱藏,只在has_children=True時顯示
                        )

                        noise_tolerance = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Noise tolerance level",
                            info="Some breeds are more vocal than others",
                            value="medium"
                        )
                        
                def update_children_age_visibility(has_children):
                    return gr.update(visible=has_children)

                has_children.change(
                    fn=update_children_age_visibility,
                    inputs=has_children,
                    outputs=children_age
                )

                get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
                # recommendation_output = gr.HTML(label="Breed Recommendations")
                recommendation_output = gr.HTML(
                    label="Breed Recommendations",
                    visible=True,  # 確保可見性
                    elem_id="recommendation-output"  # 添加唯一ID以便追蹤
                )

        # def on_find_match_click(*args):
        #     try:
        #         user_prefs = UserPreferences(
        #             living_space=args[0],
        #             yard_access=args[1],       
        #             exercise_time=args[2],
        #             exercise_type=args[3],      
        #             grooming_commitment=args[4],
        #             experience_level=args[5],
        #             time_availability=args[6],   
        #             has_children=args[7],
        #             children_age=args[8] if args[7] else None,
        #             noise_tolerance=args[9],
        #             space_for_play=True if args[0] != "apartment" else False,
        #             other_pets=False,
        #             climate="moderate",
        #             health_sensitivity="medium",
        #             barking_acceptance=args[9]
        #         )

        #         recommendations = get_breed_recommendations(user_prefs, top_n=10)

        #         history_results = [{
        #             'breed': rec['breed'],
        #             'rank': rec['rank'],
        #             'overall_score': rec['final_score'],
        #             'base_score': rec['base_score'],
        #             'bonus_score': rec['bonus_score'],
        #             'scores': rec['scores']
        #         } for rec in recommendations]

        #         history_component.save_search(
        #             user_preferences={
        #                 'living_space': args[0],
        #                 'yard_access': args[1],
        #                 'exercise_time': args[2],
        #                 'exercise_type': args[3],
        #                 'grooming_commitment': args[4],
        #                 'experience_level': args[5],
        #                 'time_availability': args[6],
        #                 'has_children': args[7],
        #                 'children_age': args[8] if args[7] else None,
        #                 'noise_tolerance': args[9],
        #                 'search_type': 'Criteria'  
        #             },
        #             results=history_results
        #         )

        #         return format_recommendation_html(recommendations, is_description_search=False)

        #     except Exception as e:
        #         print(f"Error in find match: {str(e)}")
        #         import traceback
        #         print(traceback.format_exc())
        #         return "Error getting recommendations"

        def on_find_match_click(*args):
            try:
                # 時間處理
                from datetime import datetime
                import pytz
                
                user_prefs = UserPreferences(
                    living_space=args[0],
                    yard_access=args[1],       
                    exercise_time=args[2],
                    exercise_type=args[3],      
                    grooming_commitment=args[4],
                    experience_level=args[5],
                    time_availability=args[6],   
                    has_children=args[7],
                    children_age=args[8] if args[7] else None,
                    noise_tolerance=args[9],
                    space_for_play=True if args[0] != "apartment" else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",
                    barking_acceptance=args[9]
                )
        
                recommendations = get_breed_recommendations(user_prefs, top_n=10)
        
                # 確保 recommendations 不為空
                if not recommendations:
                    return "No matching breeds found. Please adjust your criteria."
        
                # 創建標準化的結果列表
                formatted_recommendations = []
                for i, rec in enumerate(recommendations, 1):
                    formatted_rec = {
                        'breed': rec['breed'],
                        'rank': i,
                        'final_score': rec['final_score'],  # 直接使用,因為這是必需的
                        'overall_score': rec['final_score'],  # 複製 final_score
                        'base_score': rec.get('base_score', 0),
                        'bonus_score': rec.get('bonus_score', 0),
                        'scores': rec.get('scores', {})
                    }
                    formatted_recommendations.append(formatted_rec)
                
                # 使用相同的格式化數據來保存歷史記錄和生成 HTML
                history_component.save_search(
                    user_preferences={
                        'living_space': args[0],
                        'yard_access': args[1],
                        'exercise_time': args[2],
                        'exercise_type': args[3],
                        'grooming_commitment': args[4],
                        'experience_level': args[5],
                        'time_availability': args[6],
                        'has_children': args[7],
                        'children_age': args[8] if args[7] else None,
                        'noise_tolerance': args[9]
                    },
                    results=formatted_recommendations  # 使用格式化後的結果
                )
                
                # 使用相同的格式化數據生成 HTML
                return format_recommendation_html(formatted_recommendations, is_description_search=False)
                
            except Exception as e:
                print(f"Error details: {str(e)}")
                print(traceback.format_exc())
                return f"Error getting recommendations: {str(e)}"

        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                yard_access,        
                exercise_time,
                exercise_type,      
                grooming_commitment,
                experience_level,
                time_availability, 
                has_children,
                children_age,
                noise_tolerance
            ],
            outputs=recommendation_output
        )

    return {
        'living_space': living_space,
        'exercise_time': exercise_time,
        'grooming_commitment': grooming_commitment,
        'experience_level': experience_level,
        'has_children': has_children,
        'noise_tolerance': noise_tolerance,
        'get_recommendations_btn': get_recommendations_btn,
        'recommendation_output': recommendation_output,
    }