File size: 12,938 Bytes
d26f860
 
6845777
 
d26f860
 
 
 
 
fe7a40d
d26f860
3a0319c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de532fe
fc2b8a1
d26f860
 
 
 
 
 
840689b
d26f860
 
 
 
 
840689b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
 
 
 
 
840689b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26f860
 
 
6ceb202
d26f860
 
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
fc2b8a1
d26f860
 
 
 
 
 
 
 
5fd68e6
 
 
 
 
 
d26f860
 
 
 
 
 
 
68e4cf6
 
 
 
 
 
 
d26f860
 
 
 
 
68e4cf6
 
 
 
fc2b8a1
68e4cf6
 
d26f860
 
 
 
 
 
fc2b8a1
68e4cf6
 
 
 
 
 
 
 
d26f860
fc2b8a1
 
38537cb
 
fc2b8a1
 
38537cb
d26f860
fc2b8a1
 
 
 
 
 
 
 
23894e6
5fd68e6
 
 
 
 
fc2b8a1
 
 
 
5fd68e6
fc2b8a1
de532fe
fc2b8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de532fe
d26f860
fc2b8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd68e6
fc2b8a1
 
 
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
 
1aaf383
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import sqlite3
import gradio as gr
import asyncio
from typing import Generator
from dog_database import get_dog_description, dog_data
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from search_history import create_history_tab, create_history_component


def filter_breed_matches(user_prefs: UserPreferences, top_n: int = 10) -> List[Dict]:
    """
    根據使用者偏好篩選並推薦狗狗品種。
    
    Parameters:
        user_prefs: 使用者偏好設定
        top_n: 要返回的推薦數量
        
    Returns:
        List[Dict]: 排序後的推薦品種列表
    """
    all_breeds = []
    for breed_info in breed_database:
        score = calculate_compatibility_score(breed_info, user_prefs)
        if score is not None:  # 只添加未被過濾的品種
            all_breeds.append({
                'breed': breed_info['Breed'],
                'final_score': score['overall'],
                'base_score': score.get('base_score', 0),
                'bonus_score': score.get('bonus_score', 0),
                'size': breed_info['Size'],
                'scores': score
            })
    
    # 根據體型偏好過濾
    if user_prefs.size_preference != "no_preference":
        filtered_breeds = [b for b in all_breeds if b['size'].lower() == user_prefs.size_preference.lower()]
        # 如果符合體型的品種太少,調整返回數量
        if len(filtered_breeds) < 5:  # 設定最少要有5種品種
            top_n = len(filtered_breeds)
    else:
        filtered_breeds = all_breeds
    
    # 為每個品種添加排名
    sorted_breeds = sorted(filtered_breeds, key=lambda x: x['final_score'], reverse=True)
    for i, breed in enumerate(sorted_breeds, 1):
        breed['rank'] = i
    
    return sorted_breeds[:top_n]

def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):

    with gr.TabItem("Breed Recommendation"):
        with gr.Tabs():
            with gr.Tab("Find by Criteria"):
                gr.HTML("""
                    <div style='
                        text-align: center;
                        position: relative;
                        padding: 20px 0;
                        margin: 15px 0;
                        background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
                        border-radius: 10px;
                    '>
                        <!-- BETA 標籤 -->
                        <div style='
                            position: absolute;
                            top: 10px;
                            right: 20px;
                            background: linear-gradient(90deg, #4299e1, #48bb78);
                            color: white;
                            padding: 4px 12px;
                            border-radius: 15px;
                            font-size: 0.85em;
                            font-weight: 600;
                            letter-spacing: 1px;
                            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
                        '>BETA</div>
                        
                        <!-- 主標題 -->
                        <p style='
                            font-size: 1.2em;
                            margin: 0;
                            padding: 0 20px;
                            line-height: 1.5;
                            background: linear-gradient(90deg, #4299e1, #48bb78);
                            -webkit-background-clip: text;
                            -webkit-text-fill-color: transparent;
                            font-weight: 600;
                        '>
                            Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
                        </p>

                        <!-- 提示訊息 -->
                        <div style='
                            margin-top: 15px;
                            padding: 10px 20px;
                            background: linear-gradient(to right, rgba(66, 153, 225, 0.15), rgba(72, 187, 120, 0.15));
                            border-radius: 8px;
                            font-size: 0.9em;
                            color: #2D3748;
                            display: flex;
                            align-items: center;
                            justify-content: center;
                            gap: 8px;
                        '>
                            <span style="font-size: 1.2em;">🔬</span>
                            <span style="
                                letter-spacing: 0.3px;
                                line-height: 1.4;
                            "><strong>Beta Feature:</strong> Our matching algorithm is continuously improving. Results are for reference only.</span>
                        </div>
                    </div>
                """)

                with gr.Row():
                    with gr.Column():
                        living_space = gr.Radio(
                            choices=["apartment", "house_small", "house_large"],
                            label="What type of living space do you have?",
                            info="Choose your current living situation",
                            value="apartment"
                        )

                        yard_access = gr.Radio(
                            choices=["no_yard", "shared_yard", "private_yard"],
                            label="Yard Access Type",
                            info="Available outdoor space",
                            value="no_yard"
                        )

                        exercise_time = gr.Slider(
                            minimum=0,
                            maximum=180,
                            value=60,
                            label="Daily exercise time (minutes)",
                            info="Consider walks, play time, and training"
                        )

                        exercise_type = gr.Radio(
                            choices=["light_walks", "moderate_activity", "active_training"],
                            label="Exercise Style",
                            info="What kind of activities do you prefer?",
                            value="moderate_activity"
                        )


                        grooming_commitment = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Grooming commitment level",
                            info="Low: monthly, Medium: weekly, High: daily",
                            value="medium"
                        )

                    with gr.Column():
                        size_preference = gr.Radio(
                            choices=["no_preference", "small", "medium", "large", "giant"],
                            label="Preference Dog Size",
                            info="Select your preferred dog size - this will strongly filter the recommendations",
                            value = "no_preference"
                        )
                        experience_level = gr.Radio(
                            choices=["beginner", "intermediate", "advanced"],
                            label="Dog ownership experience",
                            info="Be honest - this helps find the right match",
                            value="beginner"
                        )

                        time_availability = gr.Radio(
                            choices=["limited", "moderate", "flexible"],
                            label="Time Availability",
                            info="Time available for dog care daily",
                            value="moderate"
                        )

                        has_children = gr.Checkbox(
                            label="Have children at home",
                            info="Helps recommend child-friendly breeds"
                        )

                        children_age = gr.Radio(
                            choices=["toddler", "school_age", "teenager"],
                            label="Children's Age Group",
                            info="Helps match with age-appropriate breeds",
                            visible=False  # 默認隱藏,只在has_children=True時顯示
                        )

                        noise_tolerance = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Noise tolerance level",
                            info="Some breeds are more vocal than others",
                            value="medium"
                        )
                        
                def update_children_age_visibility(has_children):
                    return gr.update(visible=has_children)

                has_children.change(
                    fn=update_children_age_visibility,
                    inputs=has_children,
                    outputs=children_age
                )

                get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
            
                recommendation_output = gr.HTML(
                    label="Breed Recommendations",
                    visible=True,  # 確保可見性
                    elem_id="recommendation-output"  
                )

        def on_find_match_click(*args):
            try:
                user_prefs = UserPreferences(
                    living_space=args[0],
                    yard_access=args[1],       
                    exercise_time=args[2],
                    exercise_type=args[3],      
                    grooming_commitment=args[4],
                    size_preference=args[5],
                    experience_level=args[6],
                    time_availability=args[7],   
                    has_children=args[8],
                    children_age=args[9] if args[8] else None,
                    noise_tolerance=args[10],
                    space_for_play=True if args[0] != "apartment" else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",
                    barking_acceptance=args[10]
                )

                recommendations = get_breed_recommendations(user_prefs, top_n=10)

                history_results = [{
                    'breed': rec['breed'],
                    'rank': rec['rank'],
                    'overall_score': rec['final_score'],
                    'base_score': rec['base_score'],
                    'bonus_score': rec['bonus_score'],
                    'scores': rec['scores']
                } for rec in recommendations]

                history_component.save_search(
                    user_preferences={
                        'living_space': args[0],
                        'yard_access': args[1],
                        'exercise_time': args[2],
                        'exercise_type': args[3],
                        'grooming_commitment': args[4],
                        'experience_level': args[5],
                        'time_availability': args[6],
                        'has_children': args[7],
                        'children_age': args[8] if args[7] else None,
                        'noise_tolerance': args[9],
                        'search_type': 'Criteria'  
                    },
                    results=history_results
                )

                return format_recommendation_html(recommendations, is_description_search=False)

            except Exception as e:
                print(f"Error in find match: {str(e)}")
                import traceback
                print(traceback.format_exc())
                return "Error getting recommendations"
        

        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                yard_access,        
                exercise_time,
                exercise_type,      
                grooming_commitment,
                size_preference,
                experience_level,
                time_availability, 
                has_children,
                children_age,
                noise_tolerance
            ],
            outputs=recommendation_output
        )

    return {
        'living_space': living_space,
        'exercise_time': exercise_time,
        'grooming_commitment': grooming_commitment,
        'experience_level': experience_level,
        'has_children': has_children,
        'noise_tolerance': noise_tolerance,
        'get_recommendations_btn': get_recommendations_btn,
        'recommendation_output': recommendation_output,
    }