Spaces:
Runtime error
Runtime error
File size: 8,526 Bytes
74b8229 f12c306 74b8229 814a362 74b8229 38ca40a 814a362 38ca40a 814a362 74b8229 1173b30 74b8229 86d9965 74b8229 38ca40a 74b8229 38ca40a f12c306 38ca40a 814a362 38ca40a 74b8229 bc8f2a7 74b8229 f12c306 b486aa4 38ca40a bc8f2a7 814a362 bc8f2a7 814a362 f12c306 b486aa4 74b8229 3fdc337 74b8229 814a362 74b8229 814a362 74b8229 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
"""
app.py - the main file for the app. This creates the flask app and handles the routes.
"""
import torch
from transformers import pipeline
from cleantext import clean
from pathlib import Path
import warnings
import time
import argparse
import logging
import gradio as gr
from gradio.inputs import Slider, Textbox
import os
import sys
from os.path import dirname
import nltk
from converse import discussion
from grammar_improve import (
detect_propers,
load_ns_checker,
neuspell_correct,
remove_repeated_words,
remove_trailing_punctuation,
build_symspell_obj,
symspeller,
fix_punct_spacing,
)
from utils import (
cleantxt_wrap,
corr,
)
nltk.download("stopwords") # TODO: find where this requirement originates from
sys.path.append(dirname(dirname(os.path.abspath(__file__))))
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
import transformers
transformers.logging.set_verbosity_error()
logging.basicConfig()
cwd = Path.cwd()
my_cwd = str(cwd.resolve()) # string so it can be passed to os.path() objects
def chat(prompt_message, temperature=0.7, top_p=0.95, top_k=50):
"""
chat - helper function that makes the whole gradio thing work.
Args:
trivia_query (str): the question to ask the bot
Returns:
[str]: the bot's response
"""
history = []
response = ask_gpt(
message=prompt_message,
chat_pipe=my_chatbot,
top_p=top_p,
top_k=top_k,
temperature=temperature,
)
history = [prompt_message, response]
html = ""
for item in history:
html += f"<b>{item}</b> <br><br>"
html += ""
return html
def ask_gpt(
message: str,
chat_pipe,
speaker="person alpha",
responder="person beta",
max_len=196,
top_p=0.95,
top_k=50,
temperature=0.6,
):
"""
ask_gpt - a function that takes in a prompt and generates a response using the pipeline. This interacts the discussion function.
Parameters:
message (str): the question to ask the bot
chat_pipe (str): the chat_pipe to use for the bot (default: "pszemraj/Ballpark-Trivia-XL")
speaker (str): the name of the speaker (default: "person alpha")
responder (str): the name of the responder (default: "person beta")
max_len (int): the maximum length of the response (default: 128)
top_p (float): the top probability threshold (default: 0.95)
top_k (int): the top k threshold (default: 50)
temperature (float): the temperature of the response (default: 0.7)
"""
st = time.perf_counter()
prompt = clean(message) # clean user input
prompt = prompt.strip() # get rid of any extra whitespace
in_len = len(prompt)
if in_len > 512:
prompt = prompt[-512:] # truncate to 512 chars
print(f"Truncated prompt to last 512 chars: started with {in_len} chars")
max_len = min(max_len, 512)
resp = discussion(
prompt_text=prompt,
pipeline=chat_pipe,
speaker=speaker,
responder=responder,
top_p=top_p,
top_k=top_k,
temperature=temperature,
max_length=max_len,
)
gpt_et = time.perf_counter()
gpt_rt = round(gpt_et - st, 2)
rawtxt = resp["out_text"]
# check for proper nouns
if basic_sc and not detect_propers(rawtxt):
cln_resp = symspeller(rawtxt, sym_checker=schnellspell)
elif not detect_propers(rawtxt):
cln_resp = neuspell_correct(rawtxt, checker=ns_checker)
else:
# no correction needed
cln_resp = rawtxt.strip()
bot_resp_a = corr(remove_repeated_words(cln_resp))
bot_resp = fix_punct_spacing(bot_resp_a)
print(f"the prompt was:\n\t{message}\nand the response was:\n\t{bot_resp}\n")
corr_rt = round(time.perf_counter() - gpt_et, 4)
print(
f"took {gpt_rt + corr_rt} sec to respond, {gpt_rt} for GPT, {corr_rt} for correction\n"
)
return remove_trailing_punctuation(bot_resp)
def get_parser():
"""
get_parser - a helper function for the argparse module
"""
parser = argparse.ArgumentParser(
description="submit a question, GPT model responds"
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="ethzanalytics/ai-msgbot-gpt2-XL", # default model
help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model",
)
parser.add_argument(
"--basic-sc",
required=False,
default=True, # TODO: change this back to False once Neuspell issues are resolved.
action="store_true",
help="turn on symspell (baseline) correction instead of the more advanced neural net models",
)
parser.add_argument(
"--verbose",
action="store_true",
default=False,
help="turn on verbose logging",
)
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
default_model = str(args.model)
model_loc = Path(default_model) # if the model is a path, use it
basic_sc = args.basic_sc # whether to use the baseline spellchecker
device = 0 if torch.cuda.is_available() else -1
print(f"CUDA avail is {torch.cuda.is_available()}")
my_chatbot = (
pipeline("text-generation", model=model_loc.resolve(), device=device)
if model_loc.exists() and model_loc.is_dir()
else pipeline("text-generation", model=default_model, device=device)
) # if the model is a name, use it. stays on CPU if no GPU available
print(f"using model {my_chatbot.model}")
if basic_sc:
print("Using the baseline spellchecker")
schnellspell = build_symspell_obj()
else:
print("using Neuspell spell checker")
ns_checker = load_ns_checker(fast=False)
print(f"using model stored here: \n {model_loc} \n")
iface = gr.Interface(
chat,
inputs=[
Textbox(default_text="Why is everyone here eating chocolate cake?", label="prompt_message", placeholder="Enter a question",
lines=2,
),
Slider(
minimum=0.0, maximum=1.0, step=0.01, default=0.6, label="temperature"
),
Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"),
Slider(minimum=0, maximum=250, step=5, default=50, label="top_k"),
],
outputs="html",
examples_per_page=8,
examples=[
["Point Break or Bad Boys II?", 0.75, 0.95, 50],
["So... you're saying this wasn't an accident?", 0.6, 0.95, 50],
["Hi, my name is Reginald", 0.6, 0.95, 100],
["Happy birthday!", 0.9, 0.95, 50],
["I have a question, can you help me?", 0.6, 0.95, 50],
["Do you know a joke?", 0.8, 0.85, 50],
["Will you marry me?", 0.9, 0.95, 138],
["Are you single?", 0.6, 0.95, 138],
["Do you like people?", 0.7, 0.95, 25],
["You never took a short cut before?", 0.7, 0.95, 125],
],
title=f"GPT Chatbot Demo: {default_model} Model",
description=f"A Demo of a Chatbot trained for conversation with humans. Size XL= 1.5B parameters.\n\n"
"**Important Notes & About:**\n\n"
"You can find a link to the model card **[here](https://huggingface.co/ethzanalytics/ai-msgbot-gpt2-XL-dialogue)**\n\n"
"1. responses can take up to 60 seconds to respond sometimes, patience is a virtue.\n"
"2. the model was trained on several different datasets. fact-check responses instead of regarding as a true statement.\n"
"3. Try adjusting the **[generation parameters](https://huggingface.co/blog/how-to-generate)** to get a better understanding of how they work!\n",
css="""
.chatbox {display:flex;flex-direction:row}
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
.resp_msg {background-color:lightgray;align-self:self-end}
""",
allow_screenshot=True,
allow_flagging="never",
theme="dark",
)
# launch the gradio interface and start the server
iface.launch(
# prevent_thread_lock=True,
enable_queue=True, # also allows for dealing with multiple users simultaneously (per newer gradio version)
)
|