File size: 8,526 Bytes
74b8229
 
 
 
 
 
 
 
 
 
 
 
 
 
f12c306
74b8229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
814a362
74b8229
 
 
 
 
 
 
 
 
 
38ca40a
814a362
38ca40a
 
 
 
 
814a362
74b8229
 
1173b30
74b8229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d9965
74b8229
 
 
 
 
38ca40a
74b8229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ca40a
f12c306
 
 
38ca40a
 
 
 
814a362
38ca40a
74b8229
bc8f2a7
74b8229
f12c306
 
b486aa4
38ca40a
bc8f2a7
814a362
 
bc8f2a7
814a362
f12c306
b486aa4
74b8229
3fdc337
 
74b8229
814a362
 
 
 
74b8229
814a362
74b8229
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
app.py - the main file for the app. This creates the flask app and handles the routes.

"""

import torch
from transformers import pipeline
from cleantext import clean
from pathlib import Path
import warnings
import time
import argparse
import logging
import gradio as gr
from gradio.inputs import Slider, Textbox
import os
import sys
from os.path import dirname
import nltk
from converse import discussion
from grammar_improve import (
    detect_propers,
    load_ns_checker,
    neuspell_correct,
    remove_repeated_words,
    remove_trailing_punctuation,
    build_symspell_obj,
    symspeller,
    fix_punct_spacing,
)

from utils import (
    cleantxt_wrap,
    corr,
)

nltk.download("stopwords")  # TODO: find where this requirement originates from

sys.path.append(dirname(dirname(os.path.abspath(__file__))))
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
import transformers

transformers.logging.set_verbosity_error()
logging.basicConfig()
cwd = Path.cwd()
my_cwd = str(cwd.resolve())  # string so it can be passed to os.path() objects


def chat(prompt_message, temperature=0.7, top_p=0.95, top_k=50):
    """
    chat - helper function that makes the whole gradio thing work.

    Args:
        trivia_query (str): the question to ask the bot

    Returns:
        [str]: the bot's response
    """
    history = []
    response = ask_gpt(
        message=prompt_message,
        chat_pipe=my_chatbot,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
    )
    history = [prompt_message, response]
    html = ""
    for item in history:
        html += f"<b>{item}</b> <br><br>"

    html += ""

    return html


def ask_gpt(
    message: str,
    chat_pipe,
    speaker="person alpha",
    responder="person beta",
    max_len=196,
    top_p=0.95,
    top_k=50,
    temperature=0.6,
):
    """

    ask_gpt - a function that takes in a prompt and generates a response using the pipeline. This interacts the discussion function.

    Parameters:
        message (str): the question to ask the bot
        chat_pipe (str): the chat_pipe to use for the bot (default: "pszemraj/Ballpark-Trivia-XL")
        speaker (str): the name of the speaker (default: "person alpha")
        responder (str): the name of the responder (default: "person beta")
        max_len (int): the maximum length of the response (default: 128)
        top_p (float): the top probability threshold (default: 0.95)
        top_k (int): the top k threshold (default: 50)
        temperature (float): the temperature of the response (default: 0.7)
    """

    st = time.perf_counter()
    prompt = clean(message)  # clean user input
    prompt = prompt.strip()  # get rid of any extra whitespace
    in_len = len(prompt)
    if in_len > 512:
        prompt = prompt[-512:]  # truncate to 512 chars
        print(f"Truncated prompt to last 512 chars: started with {in_len} chars")
        max_len = min(max_len, 512)

    resp = discussion(
        prompt_text=prompt,
        pipeline=chat_pipe,
        speaker=speaker,
        responder=responder,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        max_length=max_len,
    )
    gpt_et = time.perf_counter()
    gpt_rt = round(gpt_et - st, 2)
    rawtxt = resp["out_text"]
    # check for proper nouns
    if basic_sc and not detect_propers(rawtxt):
        cln_resp = symspeller(rawtxt, sym_checker=schnellspell)
    elif not detect_propers(rawtxt):
        cln_resp = neuspell_correct(rawtxt, checker=ns_checker)
    else:
        # no correction needed
        cln_resp = rawtxt.strip()
    bot_resp_a = corr(remove_repeated_words(cln_resp))
    bot_resp = fix_punct_spacing(bot_resp_a)
    print(f"the prompt was:\n\t{message}\nand the response was:\n\t{bot_resp}\n")
    corr_rt = round(time.perf_counter() - gpt_et, 4)
    print(
        f"took {gpt_rt + corr_rt} sec to respond, {gpt_rt} for GPT, {corr_rt} for correction\n"
    )
    return remove_trailing_punctuation(bot_resp)


def get_parser():
    """
    get_parser - a helper function for the argparse module
    """
    parser = argparse.ArgumentParser(
        description="submit a question, GPT model responds"
    )
    parser.add_argument(
        "-m",
        "--model",
        required=False,
        type=str,
        default="ethzanalytics/ai-msgbot-gpt2-XL",  # default model
        help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model",
    )
    parser.add_argument(
        "--basic-sc",
        required=False,
        default=True,  # TODO: change this back to False once Neuspell issues are resolved.
        action="store_true",
        help="turn on symspell (baseline) correction instead of the more advanced neural net models",
    )

    parser.add_argument(
        "--verbose",
        action="store_true",
        default=False,
        help="turn on verbose logging",
    )
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    default_model = str(args.model)
    model_loc = Path(default_model)  # if the model is a path, use it
    basic_sc = args.basic_sc  # whether to use the baseline spellchecker
    device = 0 if torch.cuda.is_available() else -1
    print(f"CUDA avail is {torch.cuda.is_available()}")

    my_chatbot = (
        pipeline("text-generation", model=model_loc.resolve(), device=device)
        if model_loc.exists() and model_loc.is_dir()
        else pipeline("text-generation", model=default_model, device=device)
    )  # if the model is a name, use it. stays on CPU if no GPU available
    print(f"using model {my_chatbot.model}")

    if basic_sc:
        print("Using the baseline spellchecker")
        schnellspell = build_symspell_obj()
    else:
        print("using Neuspell spell checker")
        ns_checker = load_ns_checker(fast=False)

    print(f"using model stored here: \n {model_loc} \n")
    iface = gr.Interface(
        chat,
        inputs=[
            Textbox(default_text="Why is everyone here eating chocolate cake?", label="prompt_message", placeholder="Enter a question",
                    lines=2,
                    ),
            Slider(
                minimum=0.0, maximum=1.0, step=0.01, default=0.6, label="temperature"
            ),
            Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"),
            Slider(minimum=0, maximum=250, step=5, default=50, label="top_k"),
        ],
        outputs="html",
        examples_per_page=8,
        examples=[
            ["Point Break or Bad Boys II?", 0.75, 0.95, 50],
            ["So... you're saying this wasn't an accident?", 0.6, 0.95, 50],
            ["Hi, my name is Reginald", 0.6, 0.95, 100],
            ["Happy birthday!", 0.9, 0.95, 50],
            ["I have a question, can you help me?", 0.6, 0.95, 50],
            ["Do you know a joke?", 0.8, 0.85, 50],
            ["Will you marry me?", 0.9, 0.95, 138],
            ["Are you single?", 0.6, 0.95, 138],
            ["Do you like people?", 0.7, 0.95, 25],
            ["You never took a short cut before?", 0.7, 0.95, 125],

        ],
        title=f"GPT Chatbot Demo: {default_model} Model",
        description=f"A Demo of a Chatbot trained for conversation with humans. Size XL= 1.5B parameters.\n\n"
        "**Important Notes & About:**\n\n"
        "You can find a link to the model card **[here](https://huggingface.co/ethzanalytics/ai-msgbot-gpt2-XL-dialogue)**\n\n"
        "1. responses can take up to 60 seconds to respond sometimes, patience is a virtue.\n"
        "2. the model was trained on several different datasets.  fact-check responses instead of regarding as a true statement.\n"
        "3. Try adjusting the **[generation parameters](https://huggingface.co/blog/how-to-generate)** to get a better understanding of how they work!\n",
        css="""
            .chatbox {display:flex;flex-direction:row}
            .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
            .user_msg {background-color:cornflowerblue;color:white;align-self:start}
            .resp_msg {background-color:lightgray;align-self:self-end}
        """,
        allow_screenshot=True,
        allow_flagging="never",
        theme="dark",
    )

    # launch the gradio interface and start the server
    iface.launch(
        # prevent_thread_lock=True,
        enable_queue=True,  # also allows for dealing with multiple users simultaneously (per newer gradio version)
    )