Spaces:
Runtime error
Runtime error
File size: 10,387 Bytes
74b8229 b4c0306 74b8229 766eaec 74b8229 766eaec 74b8229 766eaec b4c0306 766eaec 74b8229 766eaec 74b8229 766eaec 74b8229 0d868fb 74b8229 766eaec 74b8229 766eaec 74b8229 a5629da 74b8229 f6e8a16 a5629da f6e8a16 74b8229 235585a 74b8229 235585a b4c0306 235585a 74b8229 38ca40a 814a362 38ca40a b4c0306 38ca40a 814a362 74b8229 1173b30 74b8229 a5629da 2318c3b 74b8229 6e1a316 2318c3b b4c0306 235585a 74b8229 235585a a5629da 235585a b4c0306 235585a 74b8229 0b3d061 b4c0306 0b3d061 b4c0306 0b3d061 b4c0306 74b8229 0b3d061 a5629da 74b8229 98bcb65 a5629da 74b8229 22887e0 74b8229 a5629da 74b8229 86d9965 74b8229 0d868fb a5629da 0d868fb 896d60b 0d868fb 74b8229 a5629da 74b8229 a5629da 74b8229 b8c7507 a5629da b8c7507 74b8229 b8c7507 74b8229 0d868fb 74b8229 b8c7507 a5629da 74b8229 a5629da 74b8229 d080a18 ab8d5cf 74b8229 a5629da 74b8229 38ca40a 766eaec b4c0306 766eaec 38ca40a 896d60b 38ca40a 146762d a5629da 38ca40a 74b8229 bc8f2a7 74b8229 b4c0306 74b8229 3fdc337 74b8229 814a362 b4c0306 74b8229 814a362 74b8229 b4c0306 74b8229 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
"""
app.py - the main file for the app. This creates the flask app and handles the routes.
"""
import argparse
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s")
import os
import sys
import time
import warnings
from os.path import dirname
from pathlib import Path
import gradio as gr
import nltk
import torch
from cleantext import clean
from gradio.inputs import Slider, Textbox, Radio
from transformers import pipeline
from converse import discussion
from grammar_improve import (
build_symspell_obj,
detect_propers,
fix_punct_spacing,
load_ns_checker,
neuspell_correct,
remove_repeated_words,
remove_trailing_punctuation,
symspeller,
synthesize_grammar,
)
from utils import corr
nltk.download("stopwords") # download stopwords
sys.path.append(dirname(dirname(os.path.abspath(__file__))))
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
import transformers
transformers.logging.set_verbosity_error()
cwd = Path.cwd()
_cwd_str = str(cwd.resolve()) # string so it can be passed to os.path() objects
def chat(
prompt_message,
temperature: float = 0.5,
top_p: float = 0.95,
top_k: int = 20,
constrained_generation: str = "False",
) -> str:
"""
chat - the main function for the chatbot. This is the function that is called when the user
:param _type_ prompt_message: the message to send to the model
:param float temperature: the temperature value for the model, defaults to 0.6
:param float top_p: the top_p value for the model, defaults to 0.95
:param int top_k: the top_k value for the model, defaults to 25
:param bool constrained_generation: whether to use constrained generation or not, defaults to False
:return str: the response from the model
"""
history = []
response = ask_gpt(
message=prompt_message,
chat_pipe=my_chatbot,
top_p=top_p,
top_k=top_k,
temperature=temperature,
constrained_generation="true" in constrained_generation.lower(),
)
history = [prompt_message, response]
html = ""
for item in history:
html += f"<b>{item}</b> <br><br>"
html += ""
return html
def ask_gpt(
message: str,
chat_pipe,
speaker="person alpha",
responder="person beta",
min_length=12,
max_length=48,
top_p=0.95,
top_k=25,
temperature=0.5,
constrained_generation=False,
max_input_length=128,
) -> str:
"""
ask_gpt - helper function that asks the GPT model a question and returns the response
:param str message: the question to ask the model
:param chat_pipe: the pipeline object for the model, created by the pipeline() function
:param str speaker: the name of the speaker, defaults to "person alpha"
:param str responder: the name of the responder, defaults to "person beta"
:param int min_length: the minimum length of the response, defaults to 12
:param int max_length: the maximum length of the response, defaults to 64
:param float top_p: the top_p value for the model, defaults to 0.95
:param int top_k: the top_k value for the model, defaults to 25
:param float temperature: the temperature value for the model, defaults to 0.6
:param bool constrained_generation: whether to use constrained generation or not, defaults to False
:return str: the response from the model
"""
st = time.perf_counter()
prompt = clean(message) # clean user input
prompt = prompt.strip() # get rid of any extra whitespace
in_len = len(chat_pipe.tokenizer(prompt).input_ids)
if in_len > max_input_length:
# truncate to last max_input_length tokens
tokens = chat_pipe.tokenizer(prompt).input_ids
trunc_tokens = tokens[-max_input_length:]
prompt = chat_pipe.tokenizer.decode(trunc_tokens)
print(f"truncated prompt to {len(trunc_tokens)} tokens, input length: {in_len}")
logging.info(f"prompt: {prompt}")
resp = discussion(
prompt_text=prompt,
pipeline=chat_pipe,
speaker=speaker,
responder=responder,
top_p=top_p,
top_k=top_k,
temperature=temperature,
max_length=max_length,
min_length=min_length,
constrained_beam_search=constrained_generation,
)
gpt_et = time.perf_counter()
gpt_rt = round(gpt_et - st, 2)
rawtxt = resp["out_text"]
# check for proper nouns
if basic_sc:
cln_resp = symspeller(rawtxt, sym_checker=basic_spell)
else:
cln_resp = synthesize_grammar(corrector=grammarbot, message=rawtxt)
bot_resp_a = corr(remove_repeated_words(cln_resp))
bot_resp = fix_punct_spacing(bot_resp_a)
corr_rt = round(time.perf_counter() - gpt_et, 4)
print(f"{gpt_rt + corr_rt} to respond, {gpt_rt} GPT, {corr_rt} for correction\n")
return remove_trailing_punctuation(bot_resp)
def get_parser():
"""
get_parser - a helper function for the argparse module
"""
parser = argparse.ArgumentParser(
description="submit a question, GPT model responds"
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="ethzanalytics/ai-msgbot-gpt2-XL", # default model
help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model",
)
parser.add_argument(
"-gm",
"--gram-model",
required=False,
type=str,
default="pszemraj/grammar-synthesis-base",
help="text2text generation model ID from huggingface for the model to correct grammar",
)
parser.add_argument(
"--basic-sc",
required=False,
default=False,
action="store_true",
help="use symspell (statistical spelling correction) instead of neural spell correction",
)
parser.add_argument(
"--verbose",
action="store_true",
default=False,
help="turn on verbose logging",
)
parser.add_argument(
"--test",
action="store_true",
default=False,
help="load the smallest model for simple testing (ethzanalytics/distilgpt2-tiny-conversational)",
)
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
default_model = str(args.model)
test = args.test
if test:
logging.info("loading the smallest model for testing")
default_model = "ethzanalytics/distilgpt2-tiny-conversational"
model_loc = Path(default_model) # if the model is a path, use it
basic_sc = args.basic_sc # whether to use the baseline spellchecker
gram_model = str(args.gram_model)
device = 0 if torch.cuda.is_available() else -1
logging.info(f"CUDA avail is {torch.cuda.is_available()}")
my_chatbot = (
pipeline("text-generation", model=model_loc.resolve(), device=device)
if model_loc.exists() and model_loc.is_dir()
else pipeline("text-generation", model=default_model, device=device)
) # if the model is a name, use it. stays on CPU if no GPU available
print(f"using model {my_chatbot.model}")
if basic_sc:
print("Using the baseline spellchecker")
basic_spell = build_symspell_obj()
else:
print("using neural spell checker")
grammarbot = pipeline("text2text-generation", gram_model, device=device)
logging.info(f"using model stored here: \n {model_loc} \n")
iface = gr.Interface(
chat,
inputs=[
Textbox(
default="Why is everyone here eating chocolate cake?",
label="prompt_message",
placeholder="Start a conversation with the bot",
lines=2,
),
Slider(
minimum=0.0, maximum=1.0, step=0.05, default=0.4, label="temperature"
),
Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"),
Slider(minimum=0, maximum=100, step=5, default=20, label="top_k"),
Radio(
choices=["True", "False"],
default="False",
label="constrained_generation",
),
],
outputs="html",
examples_per_page=8,
examples=[
["Point Break or Bad Boys II?", 0.75, 0.95, 50, False],
["So... you're saying this wasn't an accident?", 0.6, 0.95, 40, False],
["Hi, my name is Reginald", 0.6, 0.95, 100, False],
["Happy birthday!", 0.9, 0.95, 50, False],
["I have a question, can you help me?", 0.6, 0.95, 50, False],
["Do you know a joke?", 0.8, 0.85, 50, False],
["Will you marry me?", 0.9, 0.95, 100, False],
["Are you single?", 0.95, 0.95, 100, False],
["Do you like people?", 0.7, 0.95, 25, False],
["You never took a shortcut before?", 0.7, 0.95, 100, False],
],
title=f"GPT Chatbot Demo: {default_model} Model",
description=f"A Demo of a Chatbot trained for conversation with humans. Size XL= 1.5B parameters.\n\n"
"**Important Notes & About:**\n\n"
"You can find a link to the model card **[here](https://huggingface.co/ethzanalytics/ai-msgbot-gpt2-XL-dialogue)**\n\n"
"1. responses can take up to 60 seconds to respond sometimes, patience is a virtue.\n"
"2. the model was trained on several different datasets. fact-check responses instead of regarding as a true statement.\n"
"3. Try adjusting the **[generation parameters](https://huggingface.co/blog/how-to-generate)** to get a better understanding of how they work!\n"
"4. New - try using [constrained beam search](https://huggingface.co/blog/constrained-beam-search) decoding to generate more coherent responses. _(experimental, feedback welcome!)_\n",
css="""
.chatbox {display:flex;flex-direction:row}
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
.resp_msg {background-color:lightgray;align-self:self-end}
""",
allow_flagging="never",
theme="dark",
)
# launch the gradio interface and start the server
iface.launch(
enable_queue=True,
)
|