File size: 8,574 Bytes
8c7c98a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630d42a
8c7c98a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
ai_single_response.py

An executable way to call the model. example:
*\gpt2_chatbot> python .\ai_single_response.py --prompt "where is the grocery store?" --time

extended-summary: 
    
    A system and method for interacting with a virtual machine using a series of messages , each message having associated otherwise one or more actions to be taken by the machine. The speaker participates in a chat with a responder , and the response from the responder is returned.

"""
import argparse
import pprint as pp
import time
import warnings
from datetime import datetime
from pathlib import Path
from cleantext import clean

warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")

from aitextgen import aitextgen


def query_gpt_model(
    folder_path,
    prompt_msg: str,
    speaker=None,
    responder="person beta",
    kparam=150,
    temp=0.75,
    top_p=0.65,
    verbose=False,
    use_gpu=False,
):
    """
    query_gpt_model [pass a prompt in to model, get a response. Does NOT "remember" past conversation]

    Args:
        folder_path ([type]): [description]
        prompt_msg (str): [description]
        speaker ([type], optional): [description]. Defaults to None.
        responder (str, optional): [description]. Defaults to "person beta".
        kparam (int, optional): [description]. Defaults to 125.
        temp (float, optional): [description]. Defaults to 0.75.
        top_p (float, optional): [description]. Defaults to 0.65.
        verbose (bool, optional): [description]. Defaults to False.
        use_gpu (bool, optional): [description]. Defaults to False.

    Returns:
        [dict]: [returns a dict with A) just model response as str B) total conversation]
    """
    ai = aitextgen(
        model="microsoft/DialoGPT-large",
        #model_folder=folder_path,
        to_gpu=False,
    )
    print("loaded model")
    p_list = []
    if "natqa" in str(folder_path).lower():
        speaker = "person alpha"  # manual correction
        responder = "person beta"
    if "wow" in str(folder_path).lower():
        speaker = "person alpha"  # manual correction
        responder = "person beta"
    if "peter" in str(folder_path).lower():
        speaker = None  # manual correction
        responder = "peter szemraj"
    if speaker is not None:
        p_list.append(speaker.lower() + ":" + "\n")  # write prompt as the speaker
    p_list.append(prompt_msg.lower() + "\n")
    p_list.append("\n")
    p_list.append(responder.lower() + ":" + "\n")
    this_prompt = "".join(p_list)
    if verbose:
        print("overall prompt:\n")
        pp.pprint(this_prompt, indent=4)
    print("\n... generating... \n")
    this_result = ai.generate(
        n=1,
        top_k=kparam,
        batch_size=512,
        max_length=128,
        min_length=16,
        prompt=this_prompt,
        temperature=temp,
        top_p=top_p,
        do_sample=True,
        return_as_list=True,
        use_cache=True,
    )
    if verbose:
        pp.pprint(this_result)  # to see what is going on
    try:
        this_result = str(this_result[0]).split("\n")
        res_out = [clean(ele) for ele in this_result]
        p_out = [clean(ele) for ele in p_list]
        if verbose:
            pp.pprint(res_out)  # to see what is going on
            pp.pprint(p_out)  # to see what is going on

        diff_list = []
        name_counter = 0
        break_safe = False
        for resline in res_out:

            if (responder + ":") in resline:
                name_counter += 1
                break_safe = True  # next line a response from bot
                continue
            if ":" in resline and name_counter > 0:
                if break_safe:
                    diff_list.append(resline)
                    break_safe = False
                else:
                    break
            if resline in p_out:
                break_safe = False
                continue

            else:
                diff_list.append(resline)
                break_safe = False

        if verbose:
            print("------------------------diff list: ")
            pp.pprint(diff_list)  # to see what is going on
            print("---------------------------------")

        output = ", ".join(diff_list)

    except:
        output = "oops, there was an error. try again"

    p_list.append(output + "\n")
    p_list.append("\n")

    model_responses = {"out_text": output, "full_conv": p_list}
    print("finished!\n")

    return model_responses


# Set up the parsing of command-line arguments
def get_parser():
    """
    get_parser [a helper function for the argparse module]

    Returns:
        [argparse.ArgumentParser]: [the argparser relevant for this script]
    """

    parser = argparse.ArgumentParser(
        description="submit a message and have a 774M parameter GPT model respond"
    )
    parser.add_argument(
        "--prompt",
        required=True,  # MUST HAVE A PROMPT
        type=str,
        help="the message the bot is supposed to respond to. Prompt is said by speaker, answered by responder.",
    )
    parser.add_argument(
        "--model",
        required=False,
        type=str,
        # "gp2_DDandPeterTexts_774M_73Ksteps", - from GPT-Peter
        default="GPT2_trivNatQAdailydia_774M_175Ksteps",
        help="folder - with respect to git directory of your repo that has the model files in it (pytorch.bin + "
        "config.json). No models? Run the script download_models.py",
    )

    parser.add_argument(
        "--speaker",
        required=False,
        default=None,
        help="Who the prompt is from (to the bot). Primarily relevant to bots trained on multi-individual chat data",
    )
    parser.add_argument(
        "--responder",
        required=False,
        default="person beta",
        help="who the responder is. Primarily relevant to bots trained on multi-individual chat data",
    )

    parser.add_argument(
        "--topk",
        required=False,
        type=int,
        default=150,
        help="how many responses to sample (positive integer). lower = more random responses",
    )

    parser.add_argument(
        "--temp",
        required=False,
        type=float,
        default=0.75,
        help="specify temperature hyperparam (0-1). roughly considered as 'model creativity'",
    )

    parser.add_argument(
        "--topp",
        required=False,
        type=float,
        default=0.65,
        help="nucleus sampling frac (0-1). aka: what fraction of possible options are considered?",
    )

    parser.add_argument(
        "--verbose",
        default=False,
        action="store_true",
        help="pass this argument if you want all the printouts",
    )
    parser.add_argument(
        "--time",
        default=False,
        action="store_true",
        help="pass this argument if you want to know runtime",
    )
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    query = args.prompt
    model_dir = str(args.model)
    model_loc = Path.cwd() / model_dir
    spkr = args.speaker
    rspndr = args.responder
    k_results = args.topk
    my_temp = args.temp
    my_top_p = args.topp
    want_verbose = args.verbose
    want_rt = args.time

    # force-update the speaker+responder params for the generic model case
    if "dailydialogue" in model_dir.lower():
        spkr = "john smith"
        rspndr = "nancy sellers"
        # ^ arbitrary people created when parsing Daily Dialogue dataset
        # # force-update the speaker+responder params
        # for the generic model case
    if "natqa" in model_dir.lower():
        spkr = "person alpha"
        rspndr = "person beta"
        # ^ arbitrary people created when parsing NatQA + TriviaQA + Daily Dialogue datasets

    st = time.time()

    resp = query_gpt_model(
        folder_path=model_loc,
        prompt_msg=query,
        speaker=spkr,
        responder=rspndr,
        kparam=k_results,
        temp=my_temp,
        top_p=my_top_p,
        verbose=want_verbose,
        use_gpu=False,
    )

    output = resp["out_text"]
    pp.pprint(output, indent=4)

    # pp.pprint(this_result[3].strip(), indent=4)
    rt = round(time.time() - st, 1)

    if want_rt:
        print("took {runtime} seconds to generate. \n".format(runtime=rt))

    if want_verbose:
        print("finished - ", datetime.now())
    if want_verbose:
        p_list = resp["full_conv"]
        print("A transcript of your chat is as follows: \n")
        p_list = [item.strip() for item in p_list]
        pp.pprint(p_list)