File size: 7,224 Bytes
3e0a1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffa7ce
 
3e0a1b1
 
 
 
 
 
 
 
 
 
9ffa7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0a1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import requests
import io
from PIL import Image
from langchain import PromptTemplate, LLMChain
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from langchain.llms import OpenAI
import openai
from g4f import Provider, Model
from langchain_g4f import G4FLLM

def set_openai_api_key(api_key):
    openai.api_key = api_key
    os.environ["OPENAI_API_KEY"] = openai.api_key

template = template = """Write a very short and unsettling {number_of_pages}-sentence horror story with images that will give you chills.  


Your answer should be structured like this with <Text> and <Image> tags.
<Text> first sentence of the horror story </Text>
<Image> describe a matching eerie or spooky image for first sentence here without including names so that prompt can be used to generate an image using an ML model.</Image>
<Text> second sentence of the horror story </Text>
<Image> describe a matching eerie or spooky image for second sentence here without including names so that prompt can be used to generate an image using an ML model.</Image>

for all {number_of_pages} sentences.
=============
Answer:"""

prompt = PromptTemplate(template=template, input_variables=["number_of_pages"])

def query(payload):
    API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
    #API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/all-526-animated"
    headers = {"Authorization": "Bearer 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"}
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.content

def query_alt(payload):
    API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/anything-v5"
    headers = {"Authorization": "Bearer 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"}
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.content

def generate_horror_plot(number_of_pages, selected_style, provider, selected_provider=None):
    if provider == "OpenAI":
        llm = OpenAI(temperature=0)
    elif provider == "G4F":
        if selected_provider == "Ails":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.Ails,
            )
        elif selected_provider == "You":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.You,
            )
        elif selected_provider == "GetGpt":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.GetGpt,
            )
        elif selected_provider == "DeepAi":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.DeepAi,
            )
        elif selected_provider == "Forefront":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.Forefront,
            )
        elif selected_provider == "Aichat":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.Aichat,
            )
        elif selected_provider == "Bard":
            llm = G4FLLM(
                model=Model.gpt_35_turbo,
                provider=Provider.Bard,
            )
        # Add other providers here
        else:
            raise ValueError("Invalid G4F provider selected.")
    else:
        raise ValueError("Invalid provider selected.")

    llm_chain = LLMChain(prompt=prompt, llm=llm)
    response = llm_chain.run(number_of_pages=number_of_pages)
    pages = response.split("<Text>")
    plot_result = []

    additional_texts = {
        "Style 1": " chilling horror illustration, dark and mysterious, haunting shadows, eerie atmosphere, spooky vector art, 8k, artist unknown",
        "Style 2": " horror story illustration, monochromatic, deep shadows, creepy background, unsettling, digital art, artist unknown",
        "Style 3": " horror art, dark and creepy, foggy night, ghostly presence, terrifying, trending on artstation, artist unknown"
    }

    for i, page in enumerate(pages[1:]):
        text, img_text = page.split("<Image>", 1)
        selected_additional_text = additional_texts.get(selected_style, "")
        
        new_img_text = img_text.strip() + " " + selected_additional_text
        text = text.replace("</Text>", "")
        
        new_img_text = new_img_text.replace("</Image>", "")
        
        plot_result.append((i + 1, "<Text>" + text.strip() + "</Text>", "<Image>" + new_img_text + "</Image>"))
    return plot_result



def generate_horror_storybook(plot_result):
    storybook = []
    for page_number, text, image_text in plot_result:
        image_bytes = query({"inputs": image_text})
        image = Image.open(io.BytesIO(image_bytes))
        blurred_image = image.filter(ImageFilter.GaussianBlur(8))

        draw = ImageDraw.Draw(blurred_image)

        font_size = 30
        font = ImageFont.truetype("Birada!.ttf", font_size)

        first_letter_font_size = 60
        first_letter_font = ImageFont.truetype("Birada!.ttf", first_letter_font_size)

        text_x, text_y = 50, 50
        max_width = blurred_image.width - text_x * 2

        text = text.replace("<Text>", "").replace("</Text>", "")
        wrapped_text = ""
        words = text.split()
        for i, word in enumerate(words):
            if i == 0:  
                first_letter_width = draw.textsize(word[0], font=first_letter_font)[0]
                draw.text((text_x, text_y), word[0], fill="white", font=first_letter_font, stroke_width=2, stroke_fill="black")
                text_x += first_letter_width + 10
                wrapped_text += word[1:] + " "  
            elif draw.textsize(wrapped_text + word, font=font)[0] < max_width:
                wrapped_text += word + " "
            else:
                draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black")
                text_y += font.getsize(wrapped_text)[1] + 10
                wrapped_text = word + " "

        draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black")
        combined_image = Image.new('RGB', (image.width * 2, image.height))
        combined_image.paste(blurred_image, (0, 0))
        combined_image.paste(image, (image.width, 0))

        storybook.append((page_number, combined_image))

    return storybook


def generate_book_cover(title, author, image_text):
    book_cover = []

    image_bytes = query({"inputs": image_text})
    image = Image.open(io.BytesIO(image_bytes))

    cover_image = Image.new('RGB', (image.width * 2, image.height), color='white')
    cover_image.paste(image, (0, 0))

    draw = ImageDraw.Draw(cover_image)
    font_size = 50
    title_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", font_size)
    author_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", 30)

    title_x, title_y = image.width + 50, 50
    author_x, author_y = image.width + 50, title_y + 100

    draw.text((title_x, title_y), title, fill="black", font=title_font)
    draw.text((author_x, author_y), "By " + author, fill="black", font=author_font)

    book_cover.append(cover_image)

    return book_cover