Spaces:
Runtime error
Runtime error
File size: 8,273 Bytes
dda1539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import json
import os
import sys
import time
from pathlib import Path
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
get_model_parallel_rank,
initialize_model_parallel,
model_parallel_is_initialized,
)
from superposed.llama.model import ModelArgs
from superposed.llama.superposed_model import SuperposedTransformer
from superposed.llama.tokenizer import Tokenizer
from superposed.llama.superpose import Superpose
from superposed.llama.utils import *
from superposed.ngrams.ngram_models import make_models
class SuperposedLlama:
@staticmethod
def build(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
device = None,
model_parallel_size: Optional[int] = None,
seed: int = 1,
):
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
if not model_parallel_is_initialized():
if model_parallel_size is None:
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(model_parallel_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if device == None:
torch.cuda.set_device(local_rank)
device = torch.cuda.current_device()
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
assert model_parallel_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
ckpt_path = checkpoints[get_model_parallel_rank()]
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
# Set up superposed decoding
model = SuperposedTransformer(model_args)
model.load_state_dict(checkpoint, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return SuperposedLlama(model, tokenizer, device)
def __init__(self, model: SuperposedTransformer, tokenizer: Tokenizer, device):
print(device)
self.model = model.to(device).eval()
self.tokenizer = tokenizer
self.device = device
@torch.inference_mode()
def sup_generate(
self,
prompt_tokens: List[List[int]],
smoothing,
max_gen_len: int,
n_token_sample: int,
alpha: int, # weight on bigram probs
temp: int,
n_drafts: int = 1, # number of beams
verbose: bool = False,
i_weights = None,
i_length = None,
ngrams = None,
get_time: bool = False,
penalty = 200
):
"""
Run multi-sequence generation using superposed embeddings.
Args:
prompt_tokens (List[List[int]]): Initial tokenized prompts
max_gen_len (int): Maximum numbers of tokens to generate
alpha (float): Alpha value
temp (float): Temperature
n_drafts (int): Number of drafts
verbose (bool): Whether to save intermediate embeddings for analysis
bsz (int): Batch size (default = 16)
i_weights (List[float]): Ngram interpolation weights
i_length (List[int]): Ngram models to interpolate (1 for bigram, 2 for trigram, etc.)
ngrams (Tuple): Ngram models
get_time (bool): Return information on time spent doing Ngram lookup
penalty (float): Penalty on uninterpolated drafts
Returns:
(alive_seq, alive_ppl), (fin_seq, fin_ppl): Tuple of (n_prompts, n_drafts, seqlen),
(n_prompts, n_drafts) for sequences still generating and sequences that have finished.
"""
# Check batch size and prompt lengths
params = self.model.params
bsz = len(prompt_tokens)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
prompt_len = min_prompt_len
assert max_prompt_len <= params.max_seq_len
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
pad_id = self.tokenizer.pad_id
# Initialize token tensor and pad where necessary
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device)
for k, t in enumerate(prompt_tokens):
tokens[k, :len(t)] = torch.tensor(t, dtype=torch.long, device=self.device)
# If no generation is possible
if min_prompt_len == total_len:
raise RuntimeError("no generation possible")
# Initialize decoding object
initial_tokens = tokens.unsqueeze(1).repeat(1, n_drafts, 1)
superpose = Superpose(initial_tokens,
tokenizer=self.tokenizer,
vocab_size=params.vocab_size,
smoothing=smoothing,
alpha=alpha,
i_weights=i_weights,
i_length=i_length,
ngrams=ngrams,
get_time=get_time,
penalty=penalty)
unseen_first = torch.ones(bsz)
# Superposition matrix
token_weights = torch.zeros(bsz, self.model.vocab_size)
if verbose:
state_list = []
prev_pos = 0
# Begin inference
for cur_pos in range(min_prompt_len, total_len):
input_text_mask = tokens != pad_id
# Take model step
if cur_pos == min_prompt_len:
token_weights = None
logits = self.model.forward(tokens[:, prev_pos:cur_pos],
start_pos=prev_pos,
token_weights=token_weights,
verbose=verbose)
if verbose:
logits, states = logits
# Softmax
if temp > 0:
probs = torch.softmax(logits[:, -1] / temp, dim=-1)
else:
raise RuntimeError("Temperature must be greater than 0 while mixing")
if verbose:
states["end_probs"] = probs
state_list.append(states)
# Flag prompts on first generation
is_first = torch.mul(tokens[:, cur_pos] == pad_id, unseen_first)
unseen_first[is_first.nonzero(as_tuple=True)[0]] = 0
# Flag prompts not yet generating
still_prompt = input_text_mask[:, cur_pos]
# Superposition pass
token_weights = superpose(probs, still_prompt, is_first, cur_pos, n_token_sample)
# Do not superpose for prompts not yet generating
keep_idx = input_text_mask[:, cur_pos].ravel().nonzero()
keep_token_weights = torch.zeros_like(token_weights)
keep_token_weights[keep_idx, tokens[keep_idx, cur_pos]] = 1
token_weights = torch.where(input_text_mask[:, cur_pos].unsqueeze(1).expand(-1, self.model.vocab_size),
keep_token_weights, token_weights)
prev_pos = cur_pos
results = superpose.return_results(prompt_len)
if verbose:
torch.save(state_list, "../embeddings.pt")
return results
else:
return results |