Spaces:
Runtime error
Runtime error
File size: 10,307 Bytes
dda1539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import multiprocessing
import argparse
import os
import pickle
import glob
import json
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaTokenizer
from loguru import logger
def create_corpuses(
ckpt_path,
start_doc,
end_doc,
dataset,
tokenizer,
train_bigram: bool,
train_trigram: bool,
train_fourgram: bool,
train_fivegram: bool,
train_sixgram: bool,
train_sevengram: bool
):
bigram_corpus = {}
trigram_corpus = {}
fourgram_corpus = {}
fivegram_corpus = {}
sixgram_corpus = {}
sevengram_corpus = {}
bigram_corpus_counts = {}
trigram_corpus_counts = {}
fourgram_corpus_counts = {}
fivegram_corpus_counts = {}
sixgram_corpus_counts = {}
sevengram_corpus_counts = {}
iterations = end_doc - start_doc
for i in tqdm(range(iterations)):
t = dataset[start_doc + i]["text"]
encoded_text = tokenizer.encode(t)
for start_idx in range(1, len(encoded_text)): # count from first real to eos
pOne = encoded_text[start_idx-1] if start_idx >= 1 else None
pTwo = encoded_text[start_idx-2] if start_idx >= 2 else None
pThree = encoded_text[start_idx-3] if start_idx >= 3 else None
pFour = encoded_text[start_idx-4] if start_idx >= 4 else None
pFive = encoded_text[start_idx-5] if start_idx >= 5 else None
pSix = encoded_text[start_idx-6] if start_idx >= 6 else None
token = encoded_text[start_idx]
# bigram
if train_bigram and start_idx >= 1:
prior = pOne
if prior not in bigram_corpus:
bigram_corpus[prior] = {}
bigram_corpus_counts[prior] = 0
bigram_corpus[prior][token] = bigram_corpus[prior].get(token, 0) + 1
bigram_corpus_counts[prior] += 1
# trigram
if train_trigram and start_idx >= 2:
prior = (pTwo, pOne)
if prior not in trigram_corpus:
trigram_corpus[prior] = {}
trigram_corpus_counts[prior] = 0
trigram_corpus[prior][token] = trigram_corpus[prior].get(token, 0) + 1
trigram_corpus_counts[prior] += 1
# fourgram
if train_fourgram and start_idx >= 3:
prior = (pThree, pTwo, pOne)
if prior not in fourgram_corpus:
fourgram_corpus[prior] = {}
fourgram_corpus_counts[prior] = 0
fourgram_corpus[prior][token] = fourgram_corpus[prior].get(token, 0) + 1
fourgram_corpus_counts[prior] += 1
# fivegram
if train_fivegram and start_idx >= 4:
prior = (pFour, pThree, pTwo, pOne)
if prior not in fivegram_corpus:
fivegram_corpus[prior] = {}
fivegram_corpus_counts[prior] = 0
fivegram_corpus[prior][token] = fivegram_corpus[prior].get(token, 0) + 1
fivegram_corpus_counts[prior] += 1
# sixgram
if train_sixgram and start_idx >= 5:
prior = (pFive, pFour, pThree, pTwo, pOne)
if prior not in sixgram_corpus:
sixgram_corpus[prior] = {}
sixgram_corpus_counts[prior] = 0
sixgram_corpus[prior][token] = sixgram_corpus[prior].get(token, 0) + 1
sixgram_corpus_counts[prior] += 1
# sevengram
if train_sevengram and start_idx >= 6:
prior = (pSix, pFive, pFour, pThree, pTwo, pOne)
if prior not in sevengram_corpus:
sevengram_corpus[prior] = {}
sevengram_corpus_counts[prior] = 0
sevengram_corpus[prior][token] = sevengram_corpus[prior].get(token, 0) + 1
sevengram_corpus_counts[prior] += 1
save_corpus(ckpt_path, bigram_corpus, trigram_corpus, fourgram_corpus, fivegram_corpus, sixgram_corpus, sevengram_corpus, start_doc, end_doc)
save_counts(ckpt_path, bigram_corpus_counts, trigram_corpus_counts, fourgram_corpus_counts, fivegram_corpus_counts, sixgram_corpus_counts, sevengram_corpus_counts, start_doc, end_doc)
def merge_corpus_helper(c1, c2):
"""
Merge the corpuses c1 and c2, returning the merged result.
"""
for prior in c2:
# if share prior
if prior in c1:
c1_prior = c1[prior]
c2_prior = c2[prior]
for token in c2_prior:
# if share token
if token in c1_prior:
c1_prior[token] += c2_prior[token]
# else just use c2's
else:
c1_prior[token] = c2_prior[token]
else:
# else just use c2's
c1[prior] = c2[prior]
return c1
def merge_counts_helper(c1, c2):
"""
Merge the count corpuses c1 and c2, returning the merged result.
"""
for prior in c2:
if prior in c1:
c1[prior] += c2[prior]
else:
c1[prior] = c2[prior]
return c1
def save_corpus(save_dir, b_d, t_d, fo_d, fi_d, si_d, se_d, start_doc, end_doc):
"""
Save corpuses b_d (bigram) to se_d (sevengram), where the corpus contains mappings
{prefix : {next_token1: ct, next_token2: ct, ...}}.
"""
prefixes = ["b_d", "t_d", "fo_d", "fi_d", "si_d", "se_d"]
for p, corpus in zip(prefixes, [b_d, t_d, fo_d, fi_d, si_d, se_d]):
with open(f"{save_dir}/{p}{start_doc}-{end_doc}.pkl", "wb") as f:
pickle.dump(corpus, f)
def save_counts(save_dir, b_ct, t_ct, fo_ct, fi_ct, si_ct, se_ct, start_doc, end_doc):
"""
Save count corpuses b_ct (bigram) to se_ct (sevengram), where each count
corpus contains mappings {prefix : total}.
"""
prefixes = ["b_ct", "t_ct", "fo_ct", "fi_ct", "si_ct", "se_ct"]
for p, corpus in zip(prefixes, [b_ct, t_ct, fo_ct, fi_ct, si_ct, se_ct]):
with open(f"{save_dir}/{p}{start_doc}-{end_doc}.pkl", "wb") as f:
pickle.dump(corpus, f)
def merge_corpuses(ckpt_path):
"""
Helper to merge corpuses in `ckpt_path`, where `ckpt_path` might contain
multiple bigram, trigram, etc. corpuses from each process.
"""
prefixes = ["b_d", "t_d", "fo_d", "fi_d", "si_d", "se_d"]
for prefix in prefixes:
if os.path.exists(f"{ckpt_path}/{prefix}_final.pkl"):
os.remove(f"{ckpt_path}/{prefix}_final.pkl")
corpus = None
for filepath in glob.glob(f"{ckpt_path}/{prefix}*"):
with open(filepath, "rb") as f:
current = pickle.load(f)
if corpus is None:
corpus = current
else:
corpus = merge_corpus_helper(corpus, current)
os.remove(filepath)
with open(f"{ckpt_path}/{prefix}_final.pkl", "wb") as f:
pickle.dump(corpus, f)
def merge_counts(ckpt_path):
"""
Helper to merge count corpuses in `ckpt_path`, where `ckpt_path` might contain
multiple bigram, trigram, etc. count corpuses from each process.
"""
prefixes = ["b_ct", "t_ct", "fo_ct", "fi_ct", "si_ct", "se_ct"]
for prefix in prefixes:
if os.path.exists(f"{ckpt_path}/{prefix}_final.pkl"):
os.remove(f"{ckpt_path}/{prefix}_final.pkl")
counts = None
for filepath in glob.glob(f"{ckpt_path}/{prefix}*"):
with open(filepath, "rb") as f:
current = pickle.load(f)
if counts is None:
counts = current
else:
counts = merge_counts_helper(counts, current)
os.remove(filepath)
with open(f"{ckpt_path}/{prefix}_final.pkl", "wb") as f:
pickle.dump(counts, f)
if __name__ == "__main__":
# Input arguments
parser = argparse.ArgumentParser()
parser.add_argument("ckpt_path", type=str, help="Path to store ngram models")
parser.add_argument("start_doc", type=str, help="# of first document")
parser.add_argument("end_doc", type=str, help="# of last document")
parser.add_argument("c", type=int, help="number of processes")
parser.add_argument("--tok_name", type=str, help="name of HF tokenizer, or llama", default="llama")
for arg_name in ["--bigram", "--trigram", "--fourgram", "--fivegram", "--sixgram", "--sevengram"]:
parser.add_argument(arg_name, type=str, help=f"Whether to make a {arg_name} model")
parser.add_argument("--dset_name", type=str, help="name of HF dataset")
parser.add_argument("--dset_path", type=str, help="path to dataset")
# Parse arguments
args = parser.parse_args()
start_doc_ovr = int(args.start_doc)
end_doc_ovr = int(args.end_doc)
n_cores = args.c
tok_name = args.tok_name
ckpt_path = args.ckpt_path
dset_name = args.dset_name
dset_path = args.dset_path
if not dset_name and not dset_path:
raise RuntimeError("Please provide a dataset")
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
logger.info(f"{start_doc_ovr} {end_doc_ovr} {n_cores}")
# Load dataset and tokenizer
if dset_name:
ds = load_dataset(dset_name, cache_dir="../../../datasets/")["train"].shuffle(seed=42)
else:
with open(dset_path, "r") as f:
ds = json.load(f)["train"]
if tok_name == "llama":
# REPLACE WITH YOUR OWN PATH
tokenizer = LlamaTokenizer.from_pretrained("../../7B_HF", add_bos_token=False)
else:
tokenizer = AutoTokenizer.from_pretrained(tok_name)
# Start running
num_processes = n_cores
total_docs = end_doc_ovr - start_doc_ovr
docs_per_c = (total_docs) // num_processes
processes = []
for core in range(n_cores):
start_doc = core * docs_per_c # relative start doc
end_doc = (core + 1) * docs_per_c if core < n_cores - 1 else total_docs # relative end doc
logger.info(f"Starting core {core} from document {start_doc} to {end_doc}")
process = multiprocessing.Process(target=create_corpuses,
args=(ckpt_path,
start_doc_ovr + start_doc,
start_doc_ovr + end_doc,
ds, tokenizer,
args.bigram,
args.trigram,
args.fourgram,
args.fivegram,
args.sixgram,
args.sevengram))
processes.append(process)
process.start()
for process in processes:
process.join()
logger.info("Finished Saving")
logger.info("Merging...")
merge_corpuses(ckpt_path)
merge_counts(ckpt_path)
logger.info("Merged.")
|