Spaces:
Runtime error
Runtime error
File size: 5,911 Bytes
92ec8d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from collections import namedtuple
import torch
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Linear
import torch.nn.functional as F
"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
class Flatten(Module):
def forward(self, input):
return input.view(input.size(0), -1)
def l2_norm(input, axis=1):
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
""" A named tuple describing a ResNet block. """
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
else:
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
return blocks
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth)
)
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth)
)
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth),
SEModule(depth, 16)
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class SeparableConv2d(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
super(SeparableConv2d, self).__init__()
self.depthwise = Conv2d(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels, bias=bias, padding=1)
self.pointwise = Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
def _upsample_add(x, y):
"""Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
"""
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
class SeparableBlock(Module):
def __init__(self, input_size, kernel_channels_in, kernel_channels_out, kernel_size):
super(SeparableBlock, self).__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.kernel_channels_in = kernel_channels_in
self.kernel_channels_out = kernel_channels_out
self.make_kernel_in = Linear(input_size, kernel_size * kernel_size * kernel_channels_in)
self.make_kernel_out = Linear(input_size, kernel_size * kernel_size * kernel_channels_out)
self.kernel_linear_in = Linear(kernel_channels_in, kernel_channels_in)
self.kernel_linear_out = Linear(kernel_channels_out, kernel_channels_out)
def forward(self, features):
features = features.view(-1, self.input_size)
kernel_in = self.make_kernel_in(features).view(-1, self.kernel_size, self.kernel_size, 1, self.kernel_channels_in)
kernel_out = self.make_kernel_out(features).view(-1, self.kernel_size, self.kernel_size, self.kernel_channels_out, 1)
kernel = torch.matmul(kernel_out, kernel_in)
kernel = self.kernel_linear_in(kernel).permute(0, 1, 2, 4, 3)
kernel = self.kernel_linear_out(kernel)
kernel = kernel.permute(0, 4, 3, 1, 2)
return kernel
|