File size: 5,911 Bytes
92ec8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from collections import namedtuple
import torch
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Linear
import torch.nn.functional as F

"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""


class Flatten(Module):
	def forward(self, input):
		return input.view(input.size(0), -1)


def l2_norm(input, axis=1):
	norm = torch.norm(input, 2, axis, True)
	output = torch.div(input, norm)
	return output


class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
	""" A named tuple describing a ResNet block. """


def get_block(in_channel, depth, num_units, stride=2):
	return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]


def get_blocks(num_layers):
	if num_layers == 50:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=4),
			get_block(in_channel=128, depth=256, num_units=14),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	elif num_layers == 100:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=13),
			get_block(in_channel=128, depth=256, num_units=30),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	elif num_layers == 152:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=8),
			get_block(in_channel=128, depth=256, num_units=36),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	else:
		raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
	return blocks


class SEModule(Module):
	def __init__(self, channels, reduction):
		super(SEModule, self).__init__()
		self.avg_pool = AdaptiveAvgPool2d(1)
		self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
		self.relu = ReLU(inplace=True)
		self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
		self.sigmoid = Sigmoid()

	def forward(self, x):
		module_input = x
		x = self.avg_pool(x)
		x = self.fc1(x)
		x = self.relu(x)
		x = self.fc2(x)
		x = self.sigmoid(x)
		return module_input * x


class bottleneck_IR(Module):
	def __init__(self, in_channel, depth, stride):
		super(bottleneck_IR, self).__init__()
		if in_channel == depth:
			self.shortcut_layer = MaxPool2d(1, stride)
		else:
			self.shortcut_layer = Sequential(
				Conv2d(in_channel, depth, (1, 1), stride, bias=False),
				BatchNorm2d(depth)
			)
		self.res_layer = Sequential(
			BatchNorm2d(in_channel),
			Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
			Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
		)

	def forward(self, x):
		shortcut = self.shortcut_layer(x)
		res = self.res_layer(x)
		return res + shortcut


class bottleneck_IR_SE(Module):
	def __init__(self, in_channel, depth, stride):
		super(bottleneck_IR_SE, self).__init__()
		if in_channel == depth:
			self.shortcut_layer = MaxPool2d(1, stride)
		else:
			self.shortcut_layer = Sequential(
				Conv2d(in_channel, depth, (1, 1), stride, bias=False),
				BatchNorm2d(depth)
			)
		self.res_layer = Sequential(
			BatchNorm2d(in_channel),
			Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
			PReLU(depth),
			Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
			BatchNorm2d(depth),
			SEModule(depth, 16)
		)

	def forward(self, x):
		shortcut = self.shortcut_layer(x)
		res = self.res_layer(x)
		return res + shortcut


class SeparableConv2d(torch.nn.Module):

	def __init__(self, in_channels, out_channels, kernel_size, bias=False):
		super(SeparableConv2d, self).__init__()
		self.depthwise = Conv2d(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels, bias=bias, padding=1)
		self.pointwise = Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)

	def forward(self, x):
		out = self.depthwise(x)
		out = self.pointwise(out)
		return out


def _upsample_add(x, y):
	"""Upsample and add two feature maps.
	Args:
	  x: (Variable) top feature map to be upsampled.
	  y: (Variable) lateral feature map.
	Returns:
	  (Variable) added feature map.
	Note in PyTorch, when input size is odd, the upsampled feature map
	with `F.upsample(..., scale_factor=2, mode='nearest')`
	maybe not equal to the lateral feature map size.
	e.g.
	original input size: [N,_,15,15] ->
	conv2d feature map size: [N,_,8,8] ->
	upsampled feature map size: [N,_,16,16]
	So we choose bilinear upsample which supports arbitrary output sizes.
	"""
	_, _, H, W = y.size()
	return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y


class SeparableBlock(Module):

	def __init__(self, input_size, kernel_channels_in, kernel_channels_out, kernel_size):
		super(SeparableBlock, self).__init__()

		self.input_size = input_size
		self.kernel_size = kernel_size
		self.kernel_channels_in = kernel_channels_in
		self.kernel_channels_out = kernel_channels_out

		self.make_kernel_in  = Linear(input_size, kernel_size * kernel_size * kernel_channels_in)
		self.make_kernel_out = Linear(input_size, kernel_size * kernel_size * kernel_channels_out)

		self.kernel_linear_in = Linear(kernel_channels_in, kernel_channels_in)
		self.kernel_linear_out = Linear(kernel_channels_out, kernel_channels_out)

	def forward(self, features):

		features = features.view(-1, self.input_size)

		kernel_in = self.make_kernel_in(features).view(-1, self.kernel_size, self.kernel_size, 1, self.kernel_channels_in)
		kernel_out = self.make_kernel_out(features).view(-1, self.kernel_size, self.kernel_size, self.kernel_channels_out, 1)

		kernel = torch.matmul(kernel_out, kernel_in)

		kernel = self.kernel_linear_in(kernel).permute(0, 1, 2, 4, 3)
		kernel = self.kernel_linear_out(kernel)
		kernel = kernel.permute(0, 4, 3, 1, 2)

		return kernel