File size: 6,371 Bytes
c85e4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f835
c85e4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
from torch.nn import Module, Sequential, Conv2d, BatchNorm2d, PReLU, Dropout, Flatten, Linear, BatchNorm1d, MaxPool2d, AdaptiveAvgPool2d, ReLU, Sigmoid
from collections import namedtuple
from pytorch_msssim import ms_ssim
import lpips 
import clip
from torchvision import transforms

class LPIPS(nn.Module):
	def __init__(self, net='alex', device='cuda'):
		super(LPIPS, self).__init__()
		self.lpips = lpips.LPIPS(net='alex').to(device)
	
	def forward(self, x, y):
		return 1- self.lpips(x, y).squeeze()


class MS_SSIM(nn.Module):
    def __init__(self, avg=False):
        super(MS_SSIM, self).__init__()
        self.ssim = ms_ssim
        self.avg = avg

    def forward(self, x, y):
        ## normalize images to [0, 1]
        x = (x+1)/2
        y = (y+1)/2
        return self.ssim(x.unsqueeze(0), y.unsqueeze(0), data_range=1, size_average=self.avg)


class IdScore(nn.Module):
	# def __init__(self, opts):
	def __init__(self, device='cuda'):
		super(IdScore, self).__init__()
		# print('Loading ResNet ArcFace')
		self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6).to(device)
		self.facenet.load_state_dict(torch.load('./pretrained_models/model_ir_se50.pth',  map_location=torch.device(device)))
		self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
		self.facenet.eval()
		self.cosine_sim = nn.CosineSimilarity(dim=1)


	def extract_feats(self, x):
		x = self.face_pool(x)
		x_feats = self.facenet(x)
		return x_feats

	def forward(self, y, x):
		x = x.unsqueeze(0)
		y = y.unsqueeze(0)
		x_feats = self.extract_feats(x)
		y_feats = self.extract_feats(y)  # Otherwise use the feature from there
		y_feats = y_feats.detach()

		# diff_views = y_feats[0].dot(x_feats[0])
		cosine_sim = self.cosine_sim(y_feats, x_feats)

		return cosine_sim

class ClipHair(nn.Module):
	def __init__(self, device='cuda'):
		super(ClipHair, self).__init__()
		self.model, self.preprocessing  = clip.load("ViT-B/32", device=device)
		self.cosine_sim = nn.CosineSimilarity(dim=1)
		self.device = device
		# self.model, self.preprocessing = model, preprocessing
	
	def extract_feats(self, x):

		x = transforms.ToPILImage()(x.squeeze())
		x = self.preprocessing(x).unsqueeze(0).to(self.device)
		x = self.model.encode_image(x)
		return x

	def forward(self, y, x):
		x = x.unsqueeze(0)
		y = y.unsqueeze(0)
		x_feats = self.extract_feats(x)
		y_feats = self.extract_feats(y)
		y_feats = y_feats.detach()

		cosine_sim = self.cosine_sim(x_feats, y_feats)

		# diff_views = y_feats[0].dot(x_feats[0])/ (y_feats[0].norm() * x_feats[0].norm())
		return cosine_sim


class bottleneck_IR_SE(Module):
	def __init__(self, in_channel, depth, stride):
		super(bottleneck_IR_SE, self).__init__()
		if in_channel == depth:
			self.shortcut_layer = MaxPool2d(1, stride)
		else:
			self.shortcut_layer = Sequential(
				Conv2d(in_channel, depth, (1, 1), stride, bias=False),
				BatchNorm2d(depth)
			)
		self.res_layer = Sequential(
			BatchNorm2d(in_channel),
			Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
			PReLU(depth),
			Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
			BatchNorm2d(depth),
			SEModule(depth, 16)
		)

	def forward(self, x):
		shortcut = self.shortcut_layer(x)
		res = self.res_layer(x)
		return res + shortcut


class Backbone(Module):
	def __init__(self, input_size, num_layers, drop_ratio=0.4, affine=True):
		super(Backbone, self).__init__()
		assert input_size in [112, 224], "input_size should be 112 or 224"
		assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
		blocks = get_blocks(num_layers)

		self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
									  BatchNorm2d(64),
									  PReLU(64))
		if input_size == 112:
			self.output_layer = Sequential(BatchNorm2d(512),
										   Dropout(drop_ratio),
										   Flatten(),
										   Linear(512 * 7 * 7, 512),
										   BatchNorm1d(512, affine=affine))
		else:
			self.output_layer = Sequential(BatchNorm2d(512),
										   Dropout(drop_ratio),
										   Flatten(),
										   Linear(512 * 14 * 14, 512),
										   BatchNorm1d(512, affine=affine))

		modules = []
		for block in blocks:
			for bottleneck in block:
				modules.append(bottleneck_IR_SE(bottleneck.in_channel,
										   bottleneck.depth,
										   bottleneck.stride))
		self.body = Sequential(*modules)

	def forward(self, x):
		x = self.input_layer(x)
		x = self.body(x)
		x = self.output_layer(x)
		return l2_norm(x)

def get_blocks(num_layers):
	if num_layers == 50:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=4),
			get_block(in_channel=128, depth=256, num_units=14),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	elif num_layers == 100:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=13),
			get_block(in_channel=128, depth=256, num_units=30),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	elif num_layers == 152:
		blocks = [
			get_block(in_channel=64, depth=64, num_units=3),
			get_block(in_channel=64, depth=128, num_units=8),
			get_block(in_channel=128, depth=256, num_units=36),
			get_block(in_channel=256, depth=512, num_units=3)
		]
	else:
		raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
	return blocks

class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
	""" A named tuple describing a ResNet block. """


def get_block(in_channel, depth, num_units, stride=2):
	return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]

def l2_norm(input, axis=1):
	norm = torch.norm(input, 2, axis, True)
	output = torch.div(input, norm)
	return output

class SEModule(Module):
	def __init__(self, channels, reduction):
		super(SEModule, self).__init__()
		self.avg_pool = AdaptiveAvgPool2d(1)
		self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
		self.relu = ReLU(inplace=True)
		self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
		self.sigmoid = Sigmoid()

	def forward(self, x):
		module_input = x
		x = self.avg_pool(x)
		x = self.fc1(x)
		x = self.relu(x)
		x = self.fc2(x)
		x = self.sigmoid(x)
		return module_input * x