File size: 8,571 Bytes
4300fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import re

import cn2an
from pypinyin import lazy_pinyin, Style

# from text.symbols import punctuation
from .symbols import language_tone_start_map
from .tone_sandhi import ToneSandhi
from .english import g2p as g2p_en
from transformers import AutoTokenizer

punctuation = ["!", "?", "…", ",", ".", "'", "-"]
current_file_path = os.path.dirname(__file__)
pinyin_to_symbol_map = {
    line.split("\t")[0]: line.strip().split("\t")[1]
    for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
}

import jieba.posseg as psg


rep_map = {
    ":": ",",
    ";": ",",
    ",": ",",
    "。": ".",
    "!": "!",
    "?": "?",
    "\n": ".",
    "·": ",",
    "、": ",",
    "...": "…",
    "$": ".",
    "“": "'",
    "”": "'",
    "‘": "'",
    "’": "'",
    "(": "'",
    ")": "'",
    "(": "'",
    ")": "'",
    "《": "'",
    "》": "'",
    "【": "'",
    "】": "'",
    "[": "'",
    "]": "'",
    "—": "-",
    "~": "-",
    "~": "-",
    "「": "'",
    "」": "'",
}

tone_modifier = ToneSandhi()


def replace_punctuation(text):
    text = text.replace("嗯", "恩").replace("呣", "母")
    pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
    replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
    replaced_text = re.sub(r"[^\u4e00-\u9fa5_a-zA-Z\s" + "".join(punctuation) + r"]+", "", replaced_text)
    replaced_text = re.sub(r"[\s]+", " ", replaced_text)

    return replaced_text


def g2p(text, impl='v2'):
    pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
    sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
    if impl == 'v1':
        _func = _g2p
    elif impl == 'v2':
        _func = _g2p_v2
    else:
        raise NotImplementedError()
    phones, tones, word2ph = _func(sentences)
    assert sum(word2ph) == len(phones)
    # assert len(word2ph) == len(text)  # Sometimes it will crash,you can add a try-catch.
    phones = ["_"] + phones + ["_"]
    tones = [0] + tones + [0]
    word2ph = [1] + word2ph + [1]
    return phones, tones, word2ph


def _get_initials_finals(word):
    initials = []
    finals = []
    orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
    orig_finals = lazy_pinyin(
        word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
    )
    for c, v in zip(orig_initials, orig_finals):
        initials.append(c)
        finals.append(v)
    return initials, finals

model_id = 'bert-base-multilingual-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_id)
def _g2p(segments):
    phones_list = []
    tones_list = []
    word2ph = []
    for seg in segments:
        # Replace all English words in the sentence
        # seg = re.sub("[a-zA-Z]+", "", seg)
        seg_cut = psg.lcut(seg)
        initials = []
        finals = []
        seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
        for word, pos in seg_cut:
            if pos == "eng":
                initials.append(['EN_WORD'])
                finals.append([word])
            else:
                sub_initials, sub_finals = _get_initials_finals(word)
                sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
                initials.append(sub_initials)
                finals.append(sub_finals)

            # assert len(sub_initials) == len(sub_finals) == len(word)
        initials = sum(initials, [])
        finals = sum(finals, [])
        #
        for c, v in zip(initials, finals):
            if c == 'EN_WORD':
                tokenized_en = tokenizer.tokenize(v)
                phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en)
                # apply offset to tones_en
                tones_en = [t + language_tone_start_map['EN'] for t in tones_en]
                phones_list += phones_en
                tones_list += tones_en
                word2ph += word2ph_en
            else:
                raw_pinyin = c + v
                # NOTE: post process for pypinyin outputs
                # we discriminate i, ii and iii
                if c == v:
                    assert c in punctuation
                    phone = [c]
                    tone = "0"
                    word2ph.append(1)
                else:
                    v_without_tone = v[:-1]
                    tone = v[-1]

                    pinyin = c + v_without_tone
                    assert tone in "12345"

                    if c:
                        # 多音节
                        v_rep_map = {
                            "uei": "ui",
                            "iou": "iu",
                            "uen": "un",
                        }
                        if v_without_tone in v_rep_map.keys():
                            pinyin = c + v_rep_map[v_without_tone]
                    else:
                        # 单音节
                        pinyin_rep_map = {
                            "ing": "ying",
                            "i": "yi",
                            "in": "yin",
                            "u": "wu",
                        }
                        if pinyin in pinyin_rep_map.keys():
                            pinyin = pinyin_rep_map[pinyin]
                        else:
                            single_rep_map = {
                                "v": "yu",
                                "e": "e",
                                "i": "y",
                                "u": "w",
                            }
                            if pinyin[0] in single_rep_map.keys():
                                pinyin = single_rep_map[pinyin[0]] + pinyin[1:]

                    assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
                    phone = pinyin_to_symbol_map[pinyin].split(" ")
                    word2ph.append(len(phone))

                phones_list += phone
                tones_list += [int(tone)] * len(phone)
    return phones_list, tones_list, word2ph


def text_normalize(text):
    numbers = re.findall(r"\d+(?:\.?\d+)?", text)
    for number in numbers:
        text = text.replace(number, cn2an.an2cn(number), 1)
    text = replace_punctuation(text)
    return text


def get_bert_feature(text, word2ph, device):
    from . import chinese_bert
    return chinese_bert.get_bert_feature(text, word2ph, model_id='bert-base-multilingual-uncased', device=device)

from .chinese import _g2p as _chinese_g2p
def _g2p_v2(segments):
    spliter = '#$&^!@'

    phones_list = []
    tones_list = []
    word2ph = []

    for text in segments:
        assert spliter not in text
        # replace all english words
        text = re.sub('([a-zA-Z\s]+)', lambda x: f'{spliter}{x.group(1)}{spliter}', text)
        texts = text.split(spliter)
        texts = [t for t in texts if len(t) > 0]

        
        for text in texts:
            if re.match('[a-zA-Z\s]+', text):
                # english
                tokenized_en = tokenizer.tokenize(text)
                phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en)
                # apply offset to tones_en
                tones_en = [t + language_tone_start_map['EN'] for t in tones_en]
                phones_list += phones_en
                tones_list += tones_en
                word2ph += word2ph_en
            else:
                phones_zh, tones_zh, word2ph_zh = _chinese_g2p([text])
                phones_list += phones_zh
                tones_list += tones_zh
                word2ph += word2ph_zh
    return phones_list, tones_list, word2ph

    

if __name__ == "__main__":
    # from text.chinese_bert import get_bert_feature

    text = "NFT啊!chemistry 但是《原神》是由,米哈\游自主,  [研发]的一款全.新开放世界.冒险游戏"
    text = '我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。'
    text = '今天下午,我们准备去shopping mall购物,然后晚上去看一场movie。'
    text = '我们现在 also 能够 help 很多公司 use some machine learning 的 algorithms 啊!'
    text = text_normalize(text)
    print(text)
    phones, tones, word2ph = g2p(text, impl='v2')
    bert = get_bert_feature(text, word2ph, device='cuda:0')
    print(phones)
    import pdb; pdb.set_trace()


# # 示例用法
# text = "这是一个示例文本:,你好!这是一个测试...."
# print(g2p_paddle(text))  # 输出: 这是一个示例文本你好这是一个测试