File size: 2,900 Bytes
4300fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import pickle
import os
import re

from . import symbols
from .fr_phonemizer import cleaner as fr_cleaner
from .fr_phonemizer import fr_to_ipa
from transformers import AutoTokenizer


def distribute_phone(n_phone, n_word):
    phones_per_word = [0] * n_word
    for task in range(n_phone):
        min_tasks = min(phones_per_word)
        min_index = phones_per_word.index(min_tasks)
        phones_per_word[min_index] += 1
    return phones_per_word

def text_normalize(text):
    text = fr_cleaner.french_cleaners(text)
    return text

model_id = 'dbmdz/bert-base-french-europeana-cased'
tokenizer = AutoTokenizer.from_pretrained(model_id)

def g2p(text, pad_start_end=True, tokenized=None):
    if tokenized is None:
        tokenized = tokenizer.tokenize(text)
    # import pdb; pdb.set_trace()
    phs = []
    ph_groups = []
    for t in tokenized:
        if not t.startswith("#"):
            ph_groups.append([t])
        else:
            ph_groups[-1].append(t.replace("#", ""))
    
    phones = []
    tones = []
    word2ph = []
    # print(ph_groups)
    for group in ph_groups:
        w = "".join(group)
        phone_len = 0
        word_len = len(group)
        if w == '[UNK]':
            phone_list = ['UNK']
        else:
            phone_list = list(filter(lambda p: p != " ", fr_to_ipa.fr2ipa(w)))
        
        for ph in phone_list:
            phones.append(ph)
            tones.append(0)
            phone_len += 1
        aaa = distribute_phone(phone_len, word_len)
        word2ph += aaa
        # print(phone_list, aaa)
        # print('=' * 10)

    if pad_start_end:
        phones = ["_"] + phones + ["_"]
        tones = [0] + tones + [0]
        word2ph = [1] + word2ph + [1]
    return phones, tones, word2ph

def get_bert_feature(text, word2ph, device=None):
    from text import french_bert
    return french_bert.get_bert_feature(text, word2ph, device=device)

if __name__ == "__main__":
    ori_text = 'Ce service gratuit est“”"" 【disponible》 en chinois 【simplifié] et autres 123'
    # ori_text = "Ils essayaient vainement de faire comprendre à ma mère qu'avec les cent mille francs que m'avait laissé mon père,"
    # print(ori_text)
    text = text_normalize(ori_text)
    print(text)
    phoneme = fr_to_ipa.fr2ipa(text)
    print(phoneme)

    
    from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer
    from text.cleaner_multiling import unicleaners

    def text_normalize(text):
        text = unicleaners(text, cased=True, lang='fr')
        return text

    # print(ori_text)
    text = text_normalize(ori_text)
    print(text)
    phonemizer = MultiPhonemizer({"fr-fr": "espeak"})
    # phonemizer.lang_to_phonemizer['fr'].keep_stress = True
    # phonemizer.lang_to_phonemizer['fr'].use_espeak_phonemes = True
    phoneme = phonemizer.phonemize(text, separator="", language='fr-fr')
    print(phoneme)