Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,477 Bytes
4300fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from .symbols import *
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
def cleaned_text_to_sequence(cleaned_text, tones, language, symbol_to_id=None):
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
Returns:
List of integers corresponding to the symbols in the text
"""
symbol_to_id_map = symbol_to_id if symbol_to_id else _symbol_to_id
phones = [symbol_to_id_map[symbol] for symbol in cleaned_text]
tone_start = language_tone_start_map[language]
tones = [i + tone_start for i in tones]
lang_id = language_id_map[language]
lang_ids = [lang_id for i in phones]
return phones, tones, lang_ids
def get_bert(norm_text, word2ph, language, device):
from .chinese_bert import get_bert_feature as zh_bert
from .english_bert import get_bert_feature as en_bert
from .japanese_bert import get_bert_feature as jp_bert
from .chinese_mix import get_bert_feature as zh_mix_en_bert
from .spanish_bert import get_bert_feature as sp_bert
from .french_bert import get_bert_feature as fr_bert
from .korean import get_bert_feature as kr_bert
lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert, 'ZH_MIX_EN': zh_mix_en_bert,
'FR': fr_bert, 'SP': sp_bert, 'ES': sp_bert, "KR": kr_bert}
bert = lang_bert_func_map[language](norm_text, word2ph, device)
return bert
|