Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,506 Bytes
b8c24aa 3a82207 7dc3087 c8fdb3b 3a82207 4e81072 7dc3087 08c1bd3 4e81072 7dc3087 fca3d9e 7dc3087 4e81072 7dc3087 64d8a64 7dc3087 3a82207 7dc3087 08c1bd3 4e81072 3a82207 7dc3087 3a82207 7dc3087 3a82207 7dc3087 3a82207 7dc3087 3a82207 7dc3087 3a82207 7dc3087 3a82207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import os
from threading import Thread
import spaces
import time
token = os.environ["HF_TOKEN"]
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-7b-it",
quantization_config=quantization_config,
token=token)
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token)
if torch.cuda.is_available():
device = torch.device('cuda')
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device('cpu')
print("Using CPU")
model = model.to(device)
model = model.to_bettertransformer()
@spaces.GPU
def chat(message, history):
start_time = time.time()
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[1]})
chat.append({"role": "user", "content": message})
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
model_inputs = tok([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=0.75,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
first_token_time = None
for new_text in streamer:
if not first_token_time:
first_token_time = time.time() - start_time
partial_text += new_text
yield partial_text
total_time = time.time() - start_time
tokens = len(tok.tokenize(partial_text))
tokens_per_second = tokens / total_time if total_time > 0 else 0
# Append the timing information to the final output
timing_info = f"\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
yield partial_text + timing_info
demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="Chat With LLMS")
demo.launch()
|