File size: 20,860 Bytes
db656f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from paddleocr import PaddleOCR
import os
import cv2
import pytesseract
import pandas as pd
import re
from thefuzz import fuzz
from thefuzz import process
import logging
import json

logging.getLogger().setLevel(logging.ERROR)


def process_image(path):
    """
    The main function that performs optical character recognition (OCR) on an image and processes the extracted data.

    Returns:
        obj: Processed text output containing extracted information.
    """
    csv_path = 'data.csv'
    data_dict = {
        "provinsi": "",
        "kabupaten": "",
        "nik": "",
        "nama": "",
        "tempat/tgl lahir": "",
        "jenis kelamin": "",
        "gol. darah": "",
        "alamat": "",
        "rt/rw": "",
        "kel/desa": "",
        "kecamatan": "",
        "agama": "",
        "status perkawinan": "",
        "pekerjaan": "",
        "kewarganegaraan": "",
        "berlaku hingga": "",
    }
    # Create list for labels spelling correction
    labels = list(data_dict.keys())
    labels.remove("kabupaten")

    try:
        # Read csv data file
        df = pd.read_csv(csv_path)
    except:
        raise ValueError("Cannot find the csv data file.")

    try:
        # Resize image
        image = resize_image(path)

        # Run Tesseract to get the right rotation and color conversion
        image_xyz = rotate_image(image)
    except:
        raise ValueError("Invalid image input.")


    # Run PaddleOCR on the whole image and Tesseract on detected areas by PaddleOCR
    all_data = run_ocr(image_xyz)

    # Check if the 16-digit ID number exists
    all_data = check_numbers(all_data)

    # Split labels and data
    new_data = split_items(all_data)

    try:
        # Correct the text of labels
        new_data, found_labels = correct_labels(new_data, labels)

        # Correct the data
        new_data = correct_data(new_data, df)
    except:
        pass

    try:
        # Add labels if missing
        new_data = add_missing_labels(new_data, labels, found_labels)
    except:
        pass

    # Print the clean output
    text = print_output(new_data)
    
    # Convert to JSON
    text_obj = json.dumps({"text":text})

    return text_obj


def get_scores(result):
    """
    Get scores from the OCR result.

    Args:
        result (list): The OCR result list.

    Returns:
        tuple: A tuple containing lists of sorted confidence scores, overall score, and all scores.
    """
    scores = [round(line[1][1],4) for line in result[0]]
    overall_score = 0
    for score in scores:
        overall_score += score
    overall_score = round(overall_score/len(scores),4)
    sorted_scores = sorted(scores)

    # Raise error if the 3rd confidence score is less than 90%
    if sorted_scores[2] < 0.9:
        raise ValueError("Poor image quality. Please avoid shadows, flashlights, and patterned backgrounds.")
    return overall_score, sorted_scores, scores


def add_missing_labels(new_data, labels, found_labels):

    # Add labels if a maximum of 3 labels is missing
    if len(found_labels) < 15 and len(found_labels) > 12:
        added = 0
        for i in range(len(labels)):
            if labels[i] != found_labels[i][0]:
                # Use next label index - 2 + the number of shifted items
                # Else, use previous label index + 2 + the number of shifted items
                try:
                    if labels[i] == "gol. darah":
                        idx = found_labels[i][1] + added
                    elif labels[i] == "alamat":
                        # Get Gol. Darah index and check if the length of next item is greater than two
                        gol_idx = new_data.index("gol. darah")
                        if len(new_data[gol_idx+1]) > 2:
                            idx = gol_idx + 1
                        else:
                            idx = gol_idx + 2
                    else:
                        idx = found_labels[i+1][1] - 2 + added
                except:
                    idx = found_labels[i-1][1] + 2 + added
                if idx < len(new_data)-1:
                    new_data.insert(idx, [labels[i], labels[i], 'label'])
                    found_labels.insert(i, [labels[i], idx])
                else:
                    new_data.insert(len(new_data)-2, [labels[i], labels[i], 'label'])
                    found_labels.insert(i, [labels[i], len(new_data)-2])
                    added += 1
    else:
        raise ValueError("Some labels cannot be detected. Please recapture a photo of the ID.")
    return new_data


def check_numbers(all_data):
    """
    Check if there is a 16-digit number in OCR text.

    Args:
        all_data (list): The structured OCR result list.

    Returns:
        list: A list containing the structured OCR output
    """
    ktp_num = ""
    for i in range(len(all_data)):
        id_output = re.findall("\d{16}", all_data[i][4])
        rt_output = re.findall("\d{3}/\d{3}", all_data[i][4])
        if len(id_output) > 0:
            # Keep PaddleOCR output for both
            ktp_num, all_data[i][4], all_data[i][5] = id_output[0], id_output[0], id_output[0]
        if len(rt_output) > 0:
            all_data[i][4], all_data[i][5] = rt_output[0], rt_output[0]
    if ktp_num == "":
        raise ValueError("KTP number cannot be detected. Please recapture a photo of the ID.")
        
    return all_data


def run_ocr(image):
    """
    Perform optical character recognition (OCR) on the given image.

    Args:
        image (ndarray): The image array on which OCR will be performed.

    Returns:
        list: A list containing information about the recognized text regions, including coordinates, recognized text,
              and corresponding OCR outputs from different OCR engines.
    """
    ocr = PaddleOCR(
        use_angle_cls=True,
        lang="id",
        det_max_side_len=1500,
        det_limit_type="min",
        det_db_unclip_ratio=1.7,
        drop_score = 0.75,
        show_log=False,
    )
    result = ocr.ocr(image, cls=True)
    all_data = []

    # Check the if the confidence score is higher than the threshold
    get_scores(result)

    # Create a list of values in form of x1, y1, x2, y2, Paddle output, Tesseract output
    for i, res in enumerate(result[0]):
        x, y = [], []
        paddle_text = res[1][0]
        for i in range(4):
            x.append(res[0][i][0])
            y.append(res[0][i][1])
        x1, y1, x2, y2 = int(min(x)), int(min(y)), int(max(x)), int(max(y))

        # Crop the area of text detected by Paddle
        snip = image[y1:y2, x1:x2]

        # Run Tesseract on the cropped area
        tess_text = pytesseract.image_to_string(snip, lang="ind+eng", config="--psm 6")
        
        # Clean the output of Tesseract and Paddle
        tess_text, paddle_text = clean_text(tess_text, paddle_text)

        all_data.append([x1, y1, x2, y2, paddle_text, tess_text])

    return all_data


def clean_text(tess_text, paddle_text):
    """
    Clean and preprocess the recognized text from Tesseract and PaddleOCR.

    Args:
        tess_text (str): Text recognized by Tesseract OCR.
        paddle_text (str): Text recognized by PaddleOCR.

    Returns:
        tuple: A tuple containing the cleaned and preprocessed text from Tesseract and PaddleOCR, respectively.
    """
    # Remove unicode
    if "\n" in tess_text or "\x0c" in tess_text:
        tess_text = tess_text.replace("\n", "")
        tess_text = tess_text.replace("\x0c", "")

    # Remove space before or after colon and hyphen
    pattern = r"\s*([-:*])\s*"
    paddle_text = re.sub(pattern, r"\1", paddle_text)
    tess_text = re.sub(pattern, r"\1", tess_text)

    # Replace any 1O with 10
    paddle_text = paddle_text.replace("1O","10")
    tess_text = tess_text.replace("1O","10")

    # Fix dots in ID number
    pattern = r"[0-9\.]{10}"
    res = re.findall(pattern, paddle_text)
    if len(res) != 0:
        paddle_text = paddle_text.replace(".","")
    
    # Add space after dot or comma and remove any two spaces
    paddle_text = re.sub(r"([A-Z]\.)([A-z])", r"\1 \2", paddle_text)

    # Fix commas recognized as dots and add space after it
    if "NO" not in paddle_text:
        pattern = r"([A-Za-z][\.,]\s{0,1})(\d{2})"
        paddle_text = re.sub(pattern, r", \2", paddle_text)
        tess_text = re.sub(pattern, r", \2", tess_text)
    else:
        pattern = r"([A-Za-z][\.]\s{0,1})(\d{1})"
        paddle_text = re.sub(pattern, r". \2", paddle_text)
        tess_text = re.sub(pattern, r". \2", tess_text)

    # Clean blood group
    if "Darah" in tess_text or "Darah" in paddle_text:
        tess_text = tess_text.replace("0", "O")
        paddle_text = paddle_text.replace("0", "O")

    # Clean symbols
    for item in ["'", '"', "!", "β€˜", "β€œ", ":", "*","=", "+"]:
        paddle_text = paddle_text.replace(item, "")
        tess_text = tess_text.replace(item, "")
    
    # Remove hyphen, dot, or comma if in the beginning of the text
    if len(tess_text) > 0:
        if tess_text[0] in ['-','.',',']:
            tess_text = tess_text[1:]
    if len(paddle_text) > 0:
        if paddle_text[0] in ['-','.',',']:
            paddle_text = paddle_text[1:]
    
    # if paddle text is similar to tesseract text without spaces, replace paddle text with tesseract text
    temp = tess_text.replace(" ","")
    if paddle_text == temp:
        paddle_text = tess_text

    # If JL in the beggining of text, add the dot
    if paddle_text[:2] == "JL" or tess_text[:2] == "JL":
        paddle_text = re.sub(r"(JL)(\.{0,1})([A-Z])",r"JL. \3", paddle_text)
        tess_text = re.sub(r"(JL)(\.{0,1})([A-Z])",r"JL. \3", tess_text)

    # Check add missing spaces to Paddle Output
    idxs = [] 
    for i, char in enumerate(tess_text):
        if char.isspace():
            idxs.append(i)
    for idx in idxs:
        try:
            p1 = tess_text[idx-2:idx]
            p2 = tess_text[idx+1:idx+3]
            if p1.isalpha() == True and p2.isalpha() == True:
                to_replace = p1+p2
                new = p1+" "+p2
                paddle_text = paddle_text.replace(to_replace, new)
        except:
            pass

    return tess_text, paddle_text


def resize_image(path):
    """
    Resize the image if its dimensions are smaller than the specified threshold.

    Args:
        path (str): The path to the image file.

    Returns:
        ndarray: The resized image array.
    """
    img = cv2.imread(path)
    width = int(img.shape[1])
    height = int(img.shape[0])
    thresh = 1500

    # Resize image to match the threshold
    if width < thresh and height < thresh:
        if width > height:
            percent = thresh // width
        else:
            percent = thresh // height
        dim = (width * percent, height * percent)
        img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
    return img


def rotate_image(image):
    """
    Rotate the image to the correct orientation by checking for specific text patterns in different rotations.

    Args:
        image (ndarray): The image array to be rotated.

    Returns:
        ndarray: The rotated image array if specific text patterns are found, otherwise the original image array.
    """
    # Convert color to XYZ
    image_xyz = cv2.cvtColor(image, cv2.COLOR_BGR2XYZ)

    # Rotate the image by 90 degrees for 4 times until recognizing some correct text
    for i in range(4):
        text = pytesseract.image_to_string(image_xyz, lang="ind+eng", config="--psm 6")
        if "PROVINSI" in text or "Darah" in text or "NIK" in text:
            return image_xyz
        else:
            image_xyz = cv2.rotate(image_xyz, cv2.ROTATE_90_CLOCKWISE)

            # If text is not found until last round, return image in original rotation
            if i == 3:
                return image_xyz


def correct_labels(new_data, labels):
    """
    Correct the labels of the extracted data by matching them with a list of valid labels.

    Args:
        new_data (list): The extracted data list to be corrected.
        labels (list): The list of valid labels.

    Returns:
        tuple: The corrected extracted data list with updated labels and list of labels
        and corresponding indexes.
    """
    thresh = 75
    found_labels = [["provinsi", 0]]
    for i in range(len(new_data)):
        paddle_fuzz = process.extractOne(new_data[i][0], labels, scorer=fuzz.ratio)
        tess_fuzz = process.extractOne(new_data[i][1], labels, scorer=fuzz.ratio)

        # Skip adding provinsi because it's already added at index 0
        if paddle_fuzz[0] != 'provinsi' and tess_fuzz[0] != 'provinsi':
            # Correct text using the match that is more than the threshold
            if paddle_fuzz[1] >= thresh:
                new_data[i][0] = paddle_fuzz[0]
                new_data[i][1] = paddle_fuzz[0]
                new_data[i].append("label")
                found_labels.append([paddle_fuzz[0], i])
            elif tess_fuzz[1] >= thresh:
                new_data[i][0] = tess_fuzz[0]
                new_data[i][1] = tess_fuzz[0]
                new_data[i].append("label")
                found_labels.append([tess_fuzz[0], i])
            # Correct "NIK"
            elif (len(new_data[i][0]) == 3 or len(new_data[i][1]) == 3) and (
                "IK" == new_data[i][0] or "IK" in new_data[i][1]
            ):
                new_data[i][0] = "nik"
                new_data[i][1] = "nik"
                new_data[i].append("label")
                found_labels.append(["nik", i])

    return new_data, found_labels


def find_uppercase_index(text):
    """
    Find the index of the first uppercase word in the given text.

    Args:
        text (str): The input text.

    Returns:
        int: The index of the first uppercase word, or -1 if no uppercase word is found.
    """
    # Split lowercase followed by uppercase without space
    pattern = r"(?<![A-Z])[A-Z]{3,}"
    match = re.search(pattern, text)
    if match:
        return match.start()
    else:
        return -1


def correct_data(new_data, df):
    """
    Correct the extracted data based on reference data from a DataFrame.

    Args:
        new_data (list): The extracted data list to be corrected.
        df (DataFrame): The reference DataFrame containing the data for correction.

    Returns:
        list: The corrected extracted data list.
    """
    # Make lists to be used in text correction
    provinsi_df = df["provinsi"].dropna().tolist()
    provinsi = [f"PROVINSI {item}" for item in provinsi_df]
    other_vals = [
        "LAKI-LAKI",
        "PEREMPUAN",
        "A",
        "B",
        "AB",
        "O",
        "ISLAM",
        "KRISTEN",
        "KATOLIK",
        "HINDU",
        "BUDHA",
        "KONGHUCU",
        "BELUM KAWIN",
        "KAWIN",
        "CERAI HIDUP",
        "CERAI MATI",
        "WNI",
        "WNA",
        "SEUMUR HIDUP",
    ]

    paddle_except_city = []
    for i in range(len(new_data)):

        # Fix Provinsi
        if i == 0 or ("PROVINSI" in new_data[i][0] or "PROVINSI" in new_data[i][1]):
            new_data[i][0], new_data[i][1] = replace_data(new_data, i, provinsi)
            kabupaten = df[new_data[i][0].replace("PROVINSI ", "")].dropna().tolist()

        # Fix Kabupaten
        elif i == 1:
            try:
                new_data[i][0], new_data[i][1] = replace_data(new_data, i, kabupaten)
            except:
                pass

        # Fix other values such as religion
        elif len(new_data[i]) == 2:
            new_data[i][0], new_data[i][1] = replace_data(new_data, i, other_vals)

        # Fix NIK
        elif i == 3 or new_data[i - 1][0].upper() == "NIK":
            new_data[i][1] = new_data[i][0]

        # Fix dates
        if i > 4:
            pattern = r"(\d{2})\W{0,1}(\d{2})\W{0,1}((19|20)\d{2})"
            new_data[i][0] = re.sub(pattern, r"\1-\2-\3", new_data[i][0])
            new_data[i][1] = re.sub(pattern, r"\1-\2-\3", new_data[i][1])

        if i != 1:
            paddle_except_city.append(new_data[i][0])

    # Add WNI if no WNI or WNA
    paddle_temp = [data[0] for data in new_data]
    tess_temp = [data[1] for data in new_data]
    if not {"WNI", "WNA"}.intersection(set(paddle_temp)) and not {"WNI", "WNA"}.intersection(set(tess_temp)):
        try:
            kew_idx = paddle_temp.index("kewarganegaraan")
            new_data.insert(kew_idx+1, ["WNI", "WNI"])
        except:
            pass
        
    # Fix issuer province name if similar to province name in line 2
    issuer_fuzz = process.extractOne(new_data[1][0], paddle_except_city, scorer=fuzz.ratio)
    if issuer_fuzz[1] >= 85:
        for i in range(len(new_data)):
            if new_data[i][0] == issuer_fuzz[0]:
                new_data[i][0], new_data[i][1] = new_data[1][0], new_data[1][0]
    

    return new_data


def replace_data(new_data, i, options_list):
    """
    Replace the data in the extracted list with the closest matching option from the given list.

    Args:
        new_data (list): The extracted data list.
        i (int): The index of the item to be replaced.
        options_list (list): The list of options for replacement.

    Returns:
        tuple: A tuple containing the replaced values for the item at index i.
    """
    paddle_fuzz = process.extractOne(new_data[i][0], options_list, scorer=fuzz.ratio)
    tess_fuzz = process.extractOne(new_data[i][1], options_list, scorer=fuzz.ratio)

    # Replace values if fuzzy matching score exceeds threshold
    if len(new_data[i][0]) < 4:
        thresh = 65
    else:
        thresh = 75
    if paddle_fuzz[1] > thresh:
        new_data[i][0] = paddle_fuzz[0]
        new_data[i][1] = paddle_fuzz[0]
    elif tess_fuzz[1] > thresh:
        new_data[i][0] = tess_fuzz[0]
        new_data[i][1] = tess_fuzz[0]
    return new_data[i][0], new_data[i][1]


def split_items(all_data):
    """
    Split the data items in the given list into separate items based on certain conditions.

    Args:
        all_data (list): The list of data items to be split.

    Returns:
        list: The new list of split data items.
    """
    new_data = []
    for i in range(len(all_data)):
        paddle_idx = find_uppercase_index(all_data[i][4])
        tess_idx = find_uppercase_index(all_data[i][5])
        if paddle_idx not in [0, -1] and tess_idx not in [0, -1]:
            p1 = [all_data[i][4][:paddle_idx].strip(), all_data[i][5][:tess_idx].strip()]
            p2 = [all_data[i][4][paddle_idx:].strip(), all_data[i][5][tess_idx:].strip()]
            if p1 != ["",""]:
                new_data.append(p1)
            if p2 != ["",""]:
                new_data.append(p2)

        # Fix the text related to blood type
        elif "Darah" in all_data[i][4] or "Darah" in all_data[i][5]:

            # Add space between blood type and label
            darah_match_1 = re.sub(r"(Darah)\W*((A|AB|B|O))", r"\1 \2", all_data[i][4])
            darah_match_2 = re.sub(r"(Darah)\W*((A|AB|B|O))", r"\1 \2", all_data[i][5])

            # Locate the space
            space_1 = darah_match_1.rfind(" ")
            space_2 = darah_match_2.rfind(" ")

            # Write the label and values in two seperate lists
            try:
                if darah_match_1[-1] in ["A", "B", "O"]:
                    new_data.append(
                        [darah_match_1[:space_1].strip(), darah_match_1[:space_1].strip()]
                    )
                    new_data.append(
                        [
                            darah_match_1[space_1 + 1 :].strip(),
                            darah_match_1[space_1 + 1 :].strip(),
                        ]
                    )
                elif darah_match_2[-1] in ["A", "B", "O"]:
                    new_data.append(
                        [darah_match_2[:space_2].strip(), darah_match_2[:space_2].strip()]
                    )
                    new_data.append(
                        [
                            darah_match_2[space_2 + 1 :].strip(),
                            darah_match_2[space_2 + 1 :].strip(),
                        ]
                    )
            except:
                pass
        else:
            new_data.append([all_data[i][4].strip(), all_data[i][5].strip()])

    return new_data


def print_output(new_data):
    """
    Create a formatted string output based on the given data.

    Args:
        new_data (list): The list of data items.

    Returns:
        str: The formatted string output.
    """
    text = ""
    for i in range(len(new_data)):

        # Change labels to Uppercase
        if new_data[i][0] == new_data[i][1] and len(new_data[i]) == 3:
            text += f"{new_data[i][0].upper()}\n"
        else:
            if len(new_data[i][0]) > 0:
                text += f"{new_data[i][0]}\n"
    return text